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† Instituto de Mateḿaticas y F́ısica Fundamental, Consejo Superior de Investigaciones
Cient́ıficas, Serrano 123, 28006 Madrid, Spain
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Abstract. The reduction and reconstruction of the dynamics of nonholonomic mechanical
systems with symmetry are investigated. We have considered a more general framework of
constrained Hamiltonian systems since they appear in the reduction procedure. A reduction
scheme in terms of the nonholonomic momentum mapping is developed. The reduction of the
nonholonomic brackets is also discussed. The theory is illustrated with several examples.

1. Introduction

The main goal of this paper is to carefully analyse the reduction and reconstruction of
nonholonomic mechanical systems with symmetry. Our starting point is the general setting for
constrained systems developed by Cantrijnet al[10]. As stated there, this framework provides a
unifying model for the description of degenerate systems as well as of mechanical systems with
nonholonomic constraints. This generality is not fictitious because in the reduction procedure
of some particular nonholonomic systems we need to consider it.

The classical approach to nonholonomic mechanical systems is based on the method of
Lagrange multipliers (see, for example, [38] for a comprehensive treatment). The geometric
foundations of the theory were stated by Vershik and Faddeev [43, 44], and the subject has
generated a great deal of interest since the fundamental work by Koiller [17]. At this moment,
there are essentially three different, but related, approaches. A Hamiltonian approach, due
to Bates and́Sniatycki [2, 4, 40], which is based on the construction of an adequate bundle
along which the constraints vanish and the equations of motion continue to be Hamiltonian;
a Lagrange multipliers approach by Marsdenet al [6, 18–20] which is a modern adaptation
of the classical method; and a Lagrangian approach by de León and de Diego [22, 23] (see
also [24, 25]) who worked on the tangent bundle and derived the equations of motion by
explicitly constructing a vector field yielding the dynamics. A more general Poisson framework
was considered by Marle [31,32]. The underlying affine differential geometry of nonholonomic
systems has been investigated in [5,14,28,29].

A mechanical system subject to constraints usually exhibits many symmetries, so in recent
years there have been many attempts to adapt the well known symplectic reduction schemes
for these systems. The main difficulty stems from the fact that, in contrast to the unconstrained
case, the symmetry of a nonholonomic system does not generally produce a conserved quantity
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(moreover, if the constraints are nonlinear the energy is not, in general, a conserved quantity).
Indeed, in [25] (see also [11, 40]) a Noether theorem was proved that gives a necessary and
sufficient condition for a quantity to be conserved.

In [6], a nonholonomic momentum mapping which extends the standard one for
unconstrained systems was proposed; in fact, we first have to identify the situation of the
constraints with respect to the symmetries and then define, at each point, a subspace of the
Lie algebra of the group of symmetries. The nonholonomic momentum mapping is then the
restriction of the usual one, but pointwise. In [6], a momentum equation was given for the
variation of the momentum along the trajectories of the system. In [7,9,10] the authors have
derived a momentum equation in terms of the dynamics.

One of our aims in this paper is to perform reduction via the nonholonomic momentum
mapping. With this purpose in mind, we introduce the notion of coadjoint representation and
the isotropy group in this nonholonomic context. Our results are the natural extension of the
symplectic reduction procedure, of course, with obvious differences and particular restrictions.
In the kinematic case, these results cannot be adapted, due to the lack of a momentum map.
In contrast, we have obtained new results in the case of horizontal symmetries by applying the
theory developed for the general case.

In any case, a key point in this study is the fact that the equations of motion for a
nonholonomic system are not Hamiltonian in the standard sense. This can be exhibited in
several ways (see [23, 25]), but one clear piece of evidence highlighting this fact is that the
evolution of the system cannot be described by using the standard Poisson bracket. Indeed, one
has to define a new bracket on the constraint submanifold which gives the correct evolution
of observables and, in particular, provides the equations of motion. This bracket does not
enjoy the Jacobi identity, so it was called the nonholonomic bracket and, in a more general
context, the almost-Poisson bracket (see [8, 15, 16, 26, 32]). The nonholonomic bracket was
first considered by Eden [12, 13] and later rediscovered by van der Schaft and Maschke [42].
The relation between nonholonomic brackets and momentum mappings was exhibited in [7].
Nonholonomic brackets have been used in recent papers to obtain reduction procedures
(see [2,9,18–20]), and they are widely used throughout this paper.

The reconstruction of the dynamics process for nonholonomic systems has been treated
in [6]. Here, we present an exposition of some new results and generalizations on the subject in
the context of the general framework for constrained systems. We also point out the similarities
between both situations.

This paper can be summarized as follows. In section 2 we give a brief description of
the general framework for constrained Hamiltonian systems developed in [10], with special
emphasis on nonholonomic mechanics. The classification stated in [10], inspired by the paper
of Blochet al [6], is also reviewed in section 3. In section 4 we discuss the reduction scheme of
the general case by means of the nonholonomic mapping mentioned above. We have derived
three different points of view to tackle the problem and illustrate them rephrasing the example of
the nonholonomic free particle in section 4.1.4. The kinematic case is considered in section 5,
where we pay particular attention to the case ofČaplygin systems. After recalling the reduction
procedure in section 5.1, we investigate the reconstruction process and obtain some nice results
in section 5.2. The case of horizontal symmetries is the subject of section 6. We briefly review
the reduction scheme and then develop a reconstruction process, paying special attention to
nonholonomic systems. In section 7, we investigate the particular case when the bundle of
‘admissible values’ for the momenta is trivial. The main motivation for this treatment is to
establish a well-posed reduction process in two steps, ‘breaking’ the symmetries to obtain first
a horizontal case and, secondly, a purely kinematic one. The underlying idea of ‘splitting’ the
reduction process can be found in [40], but in this paper we have further developed some of
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the results contained there. Throughout this paper we consider several examples and, in some
cases, compute the phases that appear in the reconstruction.

Throughout this paper, we work in the category of smooth (i.e.C∞) objects. For
convenience, we will not usually make a notational distinction between a (vector) bundle
over a manifold and the ring of its smooth sections, i.e. ifF denotes a vector bundle over a
manifoldN (for instance, a sub-bundle ofTN ), thenX ∈ F simply means thatX : N → F is
a section ofF . The only exception to this rule will be the occasional use of the notationX(N)

for the ring of smooth vector fields onN .

2. A general framework for constrained systems

Consider a symplectic manifold(P, ω), a smooth functionH : P → R (the Hamiltonian), an
embedded submanifoldM of P (the constraint submanifold) and a distributionF onP along
M, i.e.F is a vector sub-bundle ofT P|M . We are then interested in the following problem:
find a smooth sectionX of the restricted tangent bundleT P|M → M, such that

(iXω − dH)|M ∈ F 0

X ∈ TM (1)

with F 0 the annihilator ofF in T ∗P|M . In particular,X then defines a vector field onM.
The problem of the existence and uniqueness of the solutions of the constrained system

(1) was solved in the following proposition (given in [10]).

Proposition 2.1.

(i) System (1) admits a solution if and only if

dH|M ∈ (F ∩ TM⊥)0.
(ii) If (1) has a solution, then it is unique if and only if

F⊥ ∩ TM = 0.

Note that the existence condition can be equivalently expressed as

XH |M ∈ TM + F⊥

whereXH denotes the (unconstrained) Hamiltonian vector field on(P, ω) with Hamiltonian
H . Hence, any solutionX of (1) is of the form

X = XH |M +Z (2)

for someZ ∈ F⊥. An interesting special case occurs when rankF = dimM or, equivalently,
dimFx = dimTxM for all x ∈ M.

Corollary 2.2 ([10]). If rankF = dimM, then the conditionF⊥ ∩ TM = 0 implies both the
existence and uniqueness of a solution of (1).

Under the conditions of corollary 2.2, (1) is a constrained Hamiltonian system in the sense
of Marle [31], who studied such systems in the more general setting of Poisson manifolds.

It is important to point out that if the system admits a solutionX, it need not be true, in
general, that (the restriction of)H is a first integral ofX. In classical mechanics, for instance,
it is well known that imposing nonholonomic constraints on a conservative mechanical system
may destroy the conservation of energy (see [31]). An additional assumption on the nature of
the constraints is therefore needed to ensure conservation of energy. For a Lagrangian system
subject to nonholonomic constraints, a sufficient condition for the energyEL to be conserved
is that the constraints are homogeneous which, in geometrical terms, means that the dilation
vector field1 should be tangent to the constraint submanifold (see [8, 9, 25]). In the case of
linear constraints, this condition is always fulfilled.
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2.1. Nonholonomic Lagrangian systems

Let us consider a regular Lagrangian system with LagrangianL : TQ→ R, subject to a set
of nonholonomic constraints given by a(2n−m)-dimensional submanifoldM of TQ. M is
locally represented by a set of independent functionsφi , for 16 i 6 m: that is, the constraints
are merely described by the equationsφi = 0. For simplicity, in what follows we always
assume thatτQ(M) = Q, i.e. the constraints are ‘purely kinematical’ in the sense that they
do not impose restrictions on the allowable positions. The motions of the system are forced
to take place onM, and this requires the introduction of some (unknown) ‘reaction forces’.
In [23, 25], an intrinsic expression for the equations of motion was obtained, which we will
describe below.

To fix our notation, let us take(qA, q̇A) as the bundle coordinates onTQ. We denote by
1 = q̇A ∂

∂q̇A
the dilation vector field onTQ and, byS = dqA ⊗ ∂

∂q̇A
, the canonical vertical

endomorphism (see [27]). ThenωL = −dS∗ (dL) is the Poincaŕe–Cartan two-form and,
EL = 1L − L represents the energy of the system. The symplectic formωL induces two
isomorphisms ofC∞(TQ)-modules (musical mappings):

[L : X(TQ) −→ �1(TQ) ]L : �1(TQ) −→ X(TQ)

where[L(X) = iXωL and]L = [−1
L . In the absence of constraints, the dynamics is given by the

solution0L of the equationi0LωL = dEL, i.e.0L = ]L(dEL). Indeed,0L is a second-order
differential equation (SODE) whose solutions are precisely the solutions of the Euler–Lagrange
equations forL. In the presence of constraints, the equations of motion have to be modified
to take them into account.

First of all, we define a distributionF on TQ alongM by prescribing its annihilator to
be a sub-bundle ofT ∗TQ which, along the constraint submanifoldM, represents the bundle
of reaction forces. More precisely, we setF 0 = S∗(TM0). If we write Zi = ]L(S

∗(dφi)),
16 i 6 m, we have thatF⊥ is locally generated byZ1, . . . , Zm.

The equations of motion for the nonholonomic mechanical system are given by

(iXωL − dEL)|M ∈ S∗(TM0)

X|M ∈ TM.
(3)

It should be pointed out that each solution of (3) (if there exists one) is automatically a SODE
alongM. This implies that, in local coordinates, the integral curves ofX onM are of the form
(qA(t), q̇A(t)), wherebyqA(t) are solutions of the system of differential equations

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= λi ∂φi

∂q̇A
(4)

together with the constraint equationsφi(qA, q̇A) = 0, and whereλi are Lagrange multipliers
to be determined.

In this case, taking(P, ω) = (TQ,ωL), H = EL, M andF as above, we observe the
natural fitting of nonholonomic Lagrangian systems in the model (1). Looking at the problem
of existence and uniqueness of solution, we see that the hypothesis of corollary 2.2, rank
F = dimM, is fulfilled. So, the nonholonomic system will have a unique solutionX if it
satisfies the conditionF⊥ ∩ TM = 0 (the compatibility condition). If the Hessian ofL with
respect to the velocities is definite then this condition is automatically satisfied, which is the
usual case in mechanics sinceL = T − V , whereT is the kinetic energy of a Riemannian
metric onQ, andV is the potential energy. This will be the assumption made throughout the
rest of the paper. If this is the case, a simple dimension count shows thatTxTQ = F⊥x ⊕TxM,
∀x ∈ M, which gives rise to two complementary projectors:

Px : TxTQ −→ TxM Qx : TxTQ −→ F⊥x .
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A direct calculation shows thatX = P(0L|M), where0L is the solution of the associated
unconstrained or free Lagrangian system. In [4, 11, 25], the following alternative approach
has been proposed. The compatibility condition is equivalent to the condition thatF ∩ TM
determines a symplectic vector bundle onM. Then,TxTQ = (Fx ∩ TxM)⊕ (Fx ∩ TxM)⊥,
∀x ∈ M, with induced projectors:

P̄x : TxTQ −→ (Fx ∩ TxM) Q̄x : TxTQ −→ (Fx ∩ TxM)⊥.
It should be noted that, in general, the projection of the unconstrained dynamics0L by P̄ will
not produce the constrained dynamics0L,M . However, in the case of homogeneous constraints,
we have

P̄(0L) = P(0L) = 0L,M
alongM.

3. Constrained systems with symmetry: a classification

Let us consider a general constrained system (1) with symmetries. More precisely, let8 be
a symplectic action8 : G× P −→ P of a Lie groupG on the symplectic manifold(P, ω),
such that the submanifoldM, the Hamiltonian functionH and the vector sub-bundleF are
G-invariant. For eachg ∈ G andx ∈ P we put8(g, x) = 8g(x) = gx. The infinitesimal
generator (fundamental vector field) corresponding toξ ∈ g, with g the Lie algebra ofG, will
be denoted byξP . The restriction ofξP toM is precisely the infinitesimal generatorξM of the
induced action onM.

For simplicity, we will always assume that this action is free and proper. Then, the orbit
spaceP̄ = P/G is a differentiable manifold andρ : P −→ P̄ is a principal bundle with
structure groupG, wherebyρ denotes the natural projection. TheG-action induced by8
on M will still be free and proper. Thus, the quotient manifold̄M = M/G is a smooth
submanifold ofP̄ . Finally, the HamiltonianH will induce a functionH̄ on P̄ .

In what follows, we denote byV the sub-bundle ofT P , whose fibres are the tangent spaces
to theG-orbits, i.e.Vx = Tx(Gx), ∀x ∈ P or, equivalently,V = kerTρ. Note thatVx ⊂ TxM
for all x ∈ M, i.e.V|M ⊂ TM. For simplicity, we will also usually writeV, instead ofV|M ,
when referring to its restriction toM (the precise meaning should be clear from the context). If
ξM is a section ofV ∩F , we will call it ahorizontal symmetryof the given constrained system
(see [4,6]).

We now recall the symplectic reduction established by Cantrijnet al in [10], which is just
a generalization of the one obtained by Bates andS̀niatycki for nonholonomic systems (cf [4],
see also [18]). So, let us assume that there exists aG-invariant solutionX of (1) such that
X ∈ F . Recall that the latter assumption, in particular, implies thatX(H) = 0.

Remark 3.1. For nonholonomic Lagrangian systems, the condition that the constrained
dynamics should belong to the distributionF is not at all restrictive. In fact, from (3), the
property thatX ∈ F is a consequence of the fact thatX = 0L,M is a SODE.

We define a (generalized) vector sub-bundleU of T P|M by

U = (F ∩ TM) ∩ (V ∩ F)⊥ (5)

where(V ∩ F)⊥ is theω-complement ofV ∩ F in T P|M . It is not hard to see thatU is
G-invariant and, hence, projects onto a sub-bundleŪ of T P̄|M̄ . In general, this bundle need
not be of constant rank, i.e. it determines a generalized distribution onP alongM. In the
following, however, we will always tacitly assume thatU is a genuine vector bundle overM.
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Let us now denote byωU the restriction ofω to U . Clearly,ωU is alsoG-invariant and
since, moreover,iξ̃ωU = 0 for all ξ̃ ∈ V ∩ U , the two-formωU pushes down to a two-form
ωŪ on Ū (i.e.ωŪ only acts on vectors belonging tōU ). Similarly, the restriction of dH toU ,
denoted by dUH , pushes down to a one-form dŪ H̄ on Ū , which is simply the restriction of
dH̄ to Ū . Note that neitherωŪ nor dŪ H̄ are differential forms onM̄; they are exterior forms
on a vector bundle over̄M, with smooth dependence on the base point.

Proposition 3.2 ([10]). LetX be aG-invariant solution of (1) such that, in addition,X belongs
to F . Then, the projection̄X ofX ontoM̄ is a section ofŪ satisfying the equation

iX̄ωŪ = dŪ H̄ .

It is important to observe that, in general, the two-formωŪ may be degenerate. However,
in the case of a mechanical system with linear nonholonomic constraints, for instance, one can
prove thatωŪ is nondegenerate, such that(Ū , ωŪ ) becomes a symplectic vector bundle over
M̄ (see [4]). The reduced dynamics is then uniquely determined by the equation mentioned in
proposition 3.2.

Next, following [10], we will identify three classes of constrained systems with symmetry.
This classification arises from carefully considering the intersectionV ∩ F , which points out
how well the symmetries fit in the constrained system.

(i) The general case:{0} ( Vx ∩ Fx ( Vx , for all x ∈ M.
(ii) The purely kinematic case:Vx ∩ Fx = {0} andTxM = Vx + (Fx ∩ TxM), for all x ∈ M.

(iii) The case of horizontal symmetries:Vx ∩ Fx = Vx , for all x ∈ M, which is equivalent to
Vx ⊂ Fx , for all x ∈ M.

4. The general case

Consider the case where at eachx ∈ M, {0} ( Vx ∩ Fx ( Vx . Let us assume that the given
action ofG onP is Hamiltonian, with momentum mappingJ . If we make the corresponding
computations, we see thatJ is no longer a conserved quantity for the constrained dynamics.
However, extending a procedure developed by Blochet al [6] for nonholonomic mechanical
systems (see also [7]), Cantrijnet al [10] derived an equation which describes the evolution
of some components of the momentum mapping along the integral curves of the constrained
system. Which components? Just those which come from the symmetries which are compatible
with the bundleF .

More precisely, for eachx ∈ M, we put

g
x = {ξ ∈ g|ξM(x) ∈ Fx}.

Recall thatξM is just the restriction ofξP to theG-invariant submanifoldM. We have thatgx

is a vector subspace ofg. Putting

g
F =

∐
x∈M

g
x

where we use the symbol ‘
∐

’ to denote the disjoint union of the vector spaces, we obtain a
(‘generalized’) vector bundle overM, with canonical projectiongF → M : ξ ∈ gx 7→ x.
In general, this bundle need not have constant rank. However, for the subsequent discussion
we make the simplifying assumption thatgF is a genuine vector bundle overM, the fibres of
which have constant dimension (independent of the base point).
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Suppose now that the symplectic formω is exact, sayω = dθ , and that theG-action
leavesθ invariant. In such a case there always exists a well-defined momentum mapping
J : P −→ g∗ such that

〈J (x), ξ〉 = −(θx)(ξP (x)) ∀x ∈ P ∀ξ ∈ g

(see [1]). Herewith, we can define a smooth sectionJ (c) : M −→ (gF )∗ of the dual bundle
(gF )∗ as follows:

J (c)(x) : g
x −→ R J (c)(x)(ξ) = 〈J (x), ξ〉.

J (c) will be called theconstrained momentum mapping[6,7,10]. Given a smooth sectionξ̄ of
the vector bundlegF , we can then define a smooth functionJ (c)

ξ̄
onM according to

J
(c)

ξ̄
= 〈J (c), ξ̄〉.

In addition, we can construct a vector field4 onM by putting

4(x) = (ξ̄ (x))M(x) ∀x ∈ M.
Denoting the Lie derivative operator with respect to4 asL4 leads to the following theorem.

Theorem 4.1 ([10]).LetX be an arbitrary solution of (1). For any smooth sectionξ̄ of gF we
then have

X(J
(c)

ξ̄
) = −(L4θ)(X). (6)

Note that for the above result we do not have to enforce the requirement thatX is G-
invariant. Equation (6) is calledthe momentum equationfor the given constrained system.
In the case of linear nonholonomic constraints we precisely recover the result established by
Blochet al [6].

Remark 4.2. Suppose again thatX is a solution of (1) and let̄ξ be a constant section ofgF ,
i.e. ξ̄ (x) = ξ0 ∈ g for all x ∈ M. We may then identify the corresponding vector field4 with
the infinitesimal generatorξ0

M and, clearly,J (c)
ξ̄
= (Jξ0)|M . Moreover, by construction,ξ0

M is
a horizontal symmetry. The momentum equation (6) then leads to

X(J
(c)

ξ̄
) = X(Jξ0)|M = 0

i.e., we have obtained a conserved quantity ofX associated with the horizontal symmetryξ0
M .

This is a manifestation of Noether’s theorem for constrained systems.

4.1. Reduction

In this section, we are going to perform reduction in the general case via the constrained
momentum mapping. To fix ideas,we will work specifically with nonholonomic Lagrangian
systems.

Remark 4.3. We note that for nonholonomic Lagrangian systems (see [6, 9]) the reduction
theory is developed in terms of the vector bundlegM −→ Q, defined by

g
q = {ξ ∈ g|ξTQ(vq) ∈ Fvq for all vq ∈ M ∩ TqQ}.

The nonholonomic momentum mappingJ nh : TQ −→ (gM)∗ is then defined by

〈J nh(vq), ξ〉 = αL(ξTQ)(vq)
for all vq ∈ TQ andξ ∈ gq . In fact, J nh restricts naturally toM, J nh|M : M −→ (gM)∗.
For simplicity, we will usually denote this mapping byJ nh, instead ofJ nh|M . We will only
recover the distinction when confusion is possible.
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A global sectionξ̄ of the vector bundlegM −→ Q induces a vector field4 onQ as
follows:

4(q) = (ξ̄ (q))Q(q) ∈ TqQ
for all q ∈ Q. Then the nonholonomic momentum equation reads as

0L,M(J
nh

ξ̄
) = 4c(L).

We will investigate the relation between the vector bundlesgM −→ Q andgF −→ M defined
above. By definition, we have that

g
q =

⋂
vq∈M∩TqQ

g
vq

for all q ∈ Q. However, the fibres do not generally coincide. Indeed, let us takeξ ∈ gvq

andwq ∈ M ∩ TqQ. We want to see ifξ ∈ gwq , i.e. ξTQ(wq) ∈ Fwq . Applying the musical
mapping[L, this is equivalent to[L(ξTQ(wq)) = (dJξ )wq ∈ [L(Fwq ) = (F⊥wq )0. Now,F⊥ is
locally generated by the Hamiltonian vector fieldsZ1, . . . , Zm (cf section 2.1). Consequently,
we would have

(dJξ )wqZi(wq) = 0 16 i 6 m.
But (dJξ )wqZi(wq) = ωL(ξTQ, Zi)(wq) = −S∗(dφi)wq (ξTQ(wq)) = −(dφi)wq (ξvQ(wq)). In
coordinates, if we writeξQ(q) = f A(q) ∂

∂qA
, this reads as

(dφi)wq (ξ
v
Q(wq)) =

∂φi

∂q̇A
(q, q̇)f A(q).

Then, if the constraints are linear or affine,∂φi
∂q̇A
(q, q̇) only depends on the base pointq ∈ Q,

andξ ∈ gvq impliesξ ∈ gwq for allwq ∈ M∩TqQ. Therefore,gq = gwq for allwq ∈ M∩TqQ.

As we have remarked above, the main difficulty (and just the point) for nonholonomic
systems is that the momenta is not a conserved quantity. So, instead of fixing a valueµ ∈ g∗ for
the momentum as in the traditional approach of symplectic reduction [1,36,37], we will take
aC∞-sectionµ : Q −→ (gM)∗ of the dual vector bundle(gM)∗, with canonical projection
π∗ : (gM)∗ −→ Q, which gives the momenta along the integral curves of the dynamics0L,M .
Now, consider the level set

(J nh)−1(µ) = {vq ∈ M|J nh(vq) = µ(q)}.
In general,(J nh)−1(µ) will not be a submanifold ofM. We will denote the inclusion by
j : (J nh)−1(µ) ↪→ M.

Assume that the vector bundlegM −→ Q has constant rankr, and choosēξ1, . . . , ξ̄r ,
r linearly independent sections. Considerr functions onM, fi : M −→ R, defined by
fi = 〈µ, ξ̄i〉 ◦ τQ − J nhξ̄i . For eachi, we denotePξ̄i = f −1

i (0). Then, it is not difficult to see
that

(J nh)−1(µ) =
r⋂
i=1

Pξ̄i .

In the following proposition, we characterize the sectionµ and give certain conditions to
assure the existence of a differentiable structure on(J nh)−1(µ).

Proposition 4.4. If 0 is a weakly regular value offi for 16 i 6 r, thenPξ̄i is a submanifold
ofM. If, in addition, the intersection

⋂r
i=1Pξ̄i is clean, then(J nh)−1(µ) is a submanifold of

M, and0L,M is at a tangent to it if and only if

0L,M(〈µ, ξ̄i〉 ◦ τQ) = 4ci (L) (7)

for all 16 i 6 r.
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Proof. Because of the above discussion, it only remains to prove the equivalence. Assume that
the sectionµ fulfils condition (7), namely,0L,M(〈µ, ξ̄i〉◦τQ−J nhξ̄i ) = 4

c
i (L), for all 16 i 6 r.

Then, due to the nonholonomic momentum equation, we just have that0L,M(fi) = 0. So0L,M
is tangent to the level submanifoldPξ̄i for eachi. As T (J nh)−1(µ) = ⋂r

i=1 T Pξ̄i , it follows
that0L,M ∈ T (J nh)−1(µ). The converse is obvious. �

Remark 4.5. The hypothesis of 0 to be a weakly regular value offi , for 1 6 i 6 r, is
the natural translation of fixing a weakly regular value of the momentum in the approach by
Marsden and Weinstein [36].

In the following, we will assume the hypothesis of proposition 4.4.

Lemma 4.6. We have

T ⊥(J nh|M)
−1(µ) = T ⊥M + 〈Xf̃1

, . . . , Xf̃r 〉.

Proof. We will now distinguish betweenJ nh : TQ −→ (gM)∗ andJ nh|M : M −→ (gM)∗.
We have that(J nh|M)

−1(µ) = (J nh)−1(µ) ∩ M. Considerf̃i , the natural extension offi
to TQ, f̃i = 〈µ, ξ̄i〉 ◦ τQ − J nhξ̄i . For eachi, denoteP̃ξ̄i = f̃ −1

i (0). It is clear that

Pξ̄i = P̃ξ̄i ∩M. We also have that(J nh)−1(µ) = ⋂r
i=1 P̃ξ̄i . A simple dimension count shows

that dimT (J nh)−1(µ) > dimTQ − r. Consequently, we have that dimT ⊥(J nh)−1(µ) 6 r.
On the other hand, it easy to check thatXf̃i ∈ T ⊥(J nh)−1(µ), 16 i 6 r. Then, we have proved
thatT ⊥(J nh)−1(µ) = 〈Xf̃1

, . . . , Xf̃r 〉. Finally, T ⊥(J nh|M)
−1(µ) = T ⊥M + T ⊥(J nh)−1(µ) =

T ⊥M + 〈Xf̃1
, . . . , Xf̃r 〉. �

In order to perform reduction, we need a kind ofG-action on the vector bundle(gM)∗,
playing the role of the coadjoint action ofG on g∗. The following lemma enables us to go
further in that direction.

Lemma 4.7. LetAdM : G×gM −→ gM be defined byAdM(g, ξ) = Adg(ξ), for eachg ∈ G
andξ ∈ gq . ThenAdM is a well-defined ‘action’ on the vector bundlegM .

Proof. The unique fact to be proved is thatAdM is well defined, because the properties
AdMe = Id andAdMgh = AdMg ◦ AdMh follows directly from the fact thatAd is aG-action.
Thus let us takeg ∈ G andξ ∈ gq , which is to say thatξTQ(vq) ∈ Fvq for all vq ∈ TqQ ∩M.
As the vector bundleF is G-invariant, we have that(Adg(ξ))TQ(g · vq) = (8g)∗(ξTQ(vq))
belongs toFg·vq , for allvq ∈ TqQ∩M, namely,(Adg(ξ))TQ(wq) ∈ Fwq , for allwq ∈ TqQ∩M.
Consequently,Adg(ξ) ∈ ggq andAdM is well defined. �

In a similar way, we can consider theG-‘action’ on (gM)∗ defined by

CoAdM : G× (gM)∗ −→ (gM)∗

(g, η) 7−→ CoAdM(g, η) = CoAdg(η).
Note that the nonholonomic momentum mappingJ nh : M −→ (gM)∗ isG-equivariant, that
is, the following diagram:

M
Jnh−→ (gM)∗

8g ↓ ↓ CoAdMg

M
Jnh−→ (gM)∗

is commutative:CoAdg(J nh(vq)) = J nh(g · vq), for all g ∈ G.
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Remark 4.8. The concept ofG-equivariance can be defined for general constrained dynamical
systems with symmetry in a similar way. It is clear that if the Hamiltonian action of the Lie
group has aG-equivariant momentum mappingJ , the corresponding constrained momentum
mappingJ (c) will also be equivariant.

The last ingredient we need to define is the ‘isotropy group’ of the actionCoAdM

corresponding to the sectionµ : Q −→ (gM)∗. This is defined as

Gµ = {g ∈ G|CoAdM(µ) = µ}
where we mean byCoAdM(µ) = µ thatCoAdMg (µ(q)) = µ(gq) for all q ∈ Q. It is not
difficult to see thatGµ is a Lie subgroup ofG.

Therefore, we can define aGµ-action on the manifold(J nh)−1(µ) in the following manner:

2 : Gµ × (J nh)−1(µ) −→ (J nh)−1(µ)

(g, vq) 7−→ 2(g, vq) = g · vq.
The definition of the groupGµ and the equivariance ofJ nh : M −→ (gM)∗ implies that this
action is well defined, as we propose in the following lemma.

Lemma 4.9. The mapping2 is well defined.

Proof. Takeg ∈ Gµ andvq ∈ (J nh)−1(µ). By the equivariance, we have thatJ nh(2(g, vq)) =
CoAdMg (J

nh(vq)) = CoAdMg (µ(q)). Finally, by the definition ofGµ, it follows that
2(g, vq) ∈ (J nh)−1(µ). �

We can consider the action2 as the restriction to(J nh)−1(µ) of a Gµ-action onM,
2M : Gµ×M −→ M. Both2 and2M will be free and proper actions, because they inherite
these properties from the original action8 : G×TQ −→ TQ. Then, the orbit spacesM/Gµ

and(J nh)−1(µ) = (J nh)−1(µ)/Gµ are differentiable manifolds, and we have two principal
Gµ-bundlesπ : M −→ M/Gµ andπ|(J nh)−1(µ) : (J nh)−1(µ) −→ (J nh)−1(µ), respectively.

4.1.1. A kind of symplectic reduction.Now, we define a (generalized) vector sub-bundleUµ
of TM|(J nh)−1(µ), whose fibre atx ∈ (J nh)−1(µ) is given by

(Uµ)x = {v ∈ Fx ∩ Tx(J nh)−1(µ)/ωL(v, ξ̃ ) = 0, for all ξ̃ ∈ (Vµ)x ∩ Fx}. (8)

In general,Uµ need not be of constant rank. For the further discussion, however, we will
assume thatUµ is a genuine vector bundle over(J nh)−1(µ). Note thatU = F ∩T (J nh)−1(µ)∩
(Vµ ∩ F)⊥, where(Vµ ∩ F)⊥ is theωL-complement ofVµ ∩ F in T TQ|(J nh)−1(µ). Uµ isGµ-
invariant and, hence, it projects onto a sub-bundleŪµ of T (M̄µ)|(J nh)−1(µ)

.
Let us now denote byωµ the restriction ofωL toUµ. Clearly,ωµ is alsoGµ-invariant and

by the very definition of the vector bundleUµ, the two-formωµ pushes down to a two-form̄ωµ
on Ūµ. Similarly, the restriction of dEL toUµ, denoted by dµEL, pushes down to a one-form
dµĒL on Ūµ, which is simply the restriction of d̄EL to Ūµ. Note that neither̄ωµ nor dµĒL are
differential forms on(J nh)−1(µ); they are exterior forms on a vector bundle over(J nh)−1(µ),
with smooth dependence on the base point.

Proposition 4.10.Let 0L,M be the solution of (3). Then, its projection(0̄L,M)µ onto

(J nh)−1(µ) is a section ofŪµ satisfying the equation

i(0̄L,M)µ ω̄µ = dµĒL.
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Proof. Similar to proposition 3.2. �

Remark 4.11. It should be noticed that, in general, the two-formω̄µ may be degenerate. So,
the reduced dynamics is not uniquely determined by the equation mentioned in proposition
4.10.

4.1.2. Almost-Poisson reduction. For nonholonomic Lagrangian systems, we know
[8, 9, 19, 32, 42] that onM the so-called nonholonomic bracket,{·, ·}M , can be constructed
in the following manner. Considerλ, σ : M −→ R and takẽλ, σ̃ arbitrary extensions toTQ,
λ̃ ◦ jM = λ, σ̃ ◦ jM = σ , with jM : M ↪→ TQ. Then

{λ, σ }M = ωL(P̄(Xλ̃), P̄(Xσ̃ )) ◦ jM.
It is a routine procedure to verify that this bracket is well defined. In general,{·, ·}M does not
verify the Jacobi identity, except if the constraints are holonomic. This almost-Poisson bracket
is very important because, in the case of homogeneous constraints, it gives the evolution of
the constrained dynamics in the following sense: for any functionf ∈ C∞(M), its evolution
along integral curves of0L,M onM is given by

ḟ = 0L,M(f ) = {f,EL}M.
The idea of this approach is to project the nonholonomic bracket onto the reduced space

(J nh)−1(µ) via theGµ-action2 : Gµ × (J nh)−1(µ) −→ (J nh)−1(µ). For this purpose we
briefly recall the main results of the Poisson reduction stated in [35, 41], but from an almost-
Poisson point of view.

Definition 4.12. Let (M,3M) be an almost-Poisson manifold. Then a pair(N,E) that
consists of a submanifoldj : N ⊆ M, and a vector sub-bundleE of TM|N will be called a
reductive structure of(M,3M) if the following conditions are satisfied:

(i) E∩TN is tangent to a foliationF whose leaves are the fibres of a submersionπ : N −→ S;
(ii) For all ϕ, ψ ∈ C∞(M) such thatdϕ anddψ vanish onE, d{ϕ,ψ}M also vanishes onE.

Furthermore, ifS above has an almost-Poisson structure3S such that for any localC∞

functionsf , g onS, and any local extensionsϕ, ψ of π∗f , π∗g, with dϕ|E = dψ|E = 0,
the relation

{ϕ,ψ}M ◦ j = {f, g}S ◦ π
holds true, we say that(M,N,E) is a reducible triple, and(S,3S) is the reduced almost-
Poisson manifold of(M,3M) via (N,E).

The bundleE is sometimes called the control bundle. The following theorem characterizes
the reducible triples.

Theorem 4.13.Let (N,E) a reductive structure of the almost-Poisson manifold(M,3M).
Then(M,N,E) is a reducible triple iff

]M(E
0) ⊆ TN +E.

So, in our case, we have thatN = (J nh)−1(µ). It seems to be quite reasonable to
take asE, at each pointvq of (J nh)−1(µ), just the tangent atvq to theGµ-orbit of vq , i.e.
Evq = Tvq (Gµ ·vq). It is to easy see that(N,E) is a reductive structure, withS = (J nh)−1(µ).
We will discuss if(M,N,E) is a reducible triple. We have that

E0 = 〈dχ/χ ∈ C∞Gµ
(M)〉
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whereC∞Gµ
(M) denotes theGµ-invariant functions onM. Then,

]M(E
0) = 〈XMχ /χ ∈ C∞Gµ

(M)〉.
Note thatXMχ denotes the Hamiltonian vector field associated with the functionχ : M −→ R
by the musical mapping]M induced by the almost-Poisson bivector field3M . But,

XMχ (υ) = {υ, χ}M = ωL(P̄(Xυ̃), P̄(Xχ̃ )) ◦ jM
= ωL(Xυ̃, P̄(Xχ̃ )) ◦ jM = P̄(Xχ̃ )(υ)

for all υ ∈ C∞(M), whereχ̃ denotes an arbitrary extension ofχ to TQ. SoXMχ = P̄(Xχ̃ )
and

]M(E
0) = 〈P̄(Xχ̃ )/χ ∈ C∞Gµ

(M)〉.
In addition,E + T (J nh)−1(µ) = T (J nh)−1(µ), then we have

]M(E
0) ⊆ T (J nh)−1(µ)⇐⇒ P̄(Xχ̃ )(fi) ◦ j = 0 16 i 6 r ∀χ ∈ C∞Gµ

(M)

⇐⇒ {fi, χ}M ◦ j = 0 16 i 6 r ∀χ ∈ C∞Gµ
(M). (9)

In the purely kinematic case, as we will discuss below, the nonholonomic momentum
mapping is trivial, and therefore conditions (9) hold trivially (in fact,(J nh)−1(µ) = M). In
the horizontal case, we would havegM = g × Q, sor = dimG. Taking a constant section
µ(q) = (µ, q) and a basis of the Lie algebrag, ξ1, . . . , ξr , we could writefi = 〈µ, ξi〉 − Jξi ,
16 i 6 r. Then{fi, χ}M ◦ j = −P̄(Xfi )(χ) ◦ j = (ξi)M(χ) ◦ j . In general, conditions (9)
will not be fulfilled, becauseC∞Gµ

(M) 6= C∞G (M).

4.1.3. Almost-Poisson mappings.The obstruction we have found above in the horizontal case
to reduce the nonholonomic bracket{·, ·}M to (J nh)−1(µ) via ((J nh)−1(µ)), T (Gµ·)) leads us
to develop another reduction scheme which takes into account the whole groupG. For that
purpose, let us define the following mapping:

k : (J nh)−1(µ)
kµ−→ M/Gµ

p−→ M/G = M̄.
On M̄, we have the natural almost-Poisson structure induced by(M,3M). The idea of
this section is to study under which conditions there exists an almost-Poisson structure on
(J nh)−1(µ) so thatk is an almost-Poisson mapping. In this case, then for each pair of functions
λ̄, σ̄ : M̄ −→ R, we would have that

{λµ, σµ}µ = {λ̄, σ̄ }M̄ ◦ k
with λ̄ ◦ k = λµ andσ̄ ◦ k = σµ.

In fact, takingλ̄1, λ̄2 : M −→ R with λ̄1 ◦ k = λ̄2 ◦ k = λµ, we would have

{λ̄1, σ̄ }M̄ ◦ k = {λ̄2, σ̄ }M̄ ◦ k ∀σ̄ ∈ C∞(M̄). (10)

In case ofk being injective, this equality would be a necessary and sufficient condition to
obtain an almost-Poisson bracket{·, ·}µ on(J nh)−1(µ), makingk an almost-Poisson morphism.
Moreover, in this case,{·, ·}µ will uniquely satisfy that property.

We will discuss if equality (10) is fulfilled. Equivalently, given̄λ : M̄ −→ R with
λ̄ ◦ k = 0, we want to verify if

{λ̄, σ̄ }M̄ ◦ k = 0 ∀σ̄ ∈ C∞(M̄).
Consider the following commutative diagram:

(J nh)−1(µ)
j−→ M −→ M

π(Jnh)−1(µ) ↓ ↓ ↓ ρ|M

(J nh)−1(µ)
kµ−→ M/Gµ

p−→ M̄ .
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Then, we have that{ρ∗|Mλ̄, ρ∗|Mσ̄ }M ◦ j = {λ̄, σ̄ }M̄ ◦ ρ|M ◦ j = {λ̄, σ̄ }M̄ ◦ k ◦ π(Jnh)−1(µ). In
addition,ρ∗|Mλ̄ ◦ j = λ̄ ◦ k ◦ π(Jnh)−1(µ) = 0.

It is clear that

{ρ∗|Mλ̄, ρ∗|Mσ̄ }M ◦ j = 0⇐⇒ {λ̄, σ̄ }M̄ ◦ k = 0.

Therefore, our question can now be presented as follows: givenλ ∈ C∞G (M) with λ ◦ j = 0,
we want to verify if

{λ, σ }M ◦ j = 0 ∀σ ∈ C∞G (M).
By definition, we have that{λ, σ }M = ωL(P̄(Xλ̃), P̄(Xσ̃ )) ◦ jM , whereλ̃, σ̃ are arbitrary
extensions ofλ, σ toTQ, λ̃◦ jM = λ, σ̃ ◦ jM = σ . Without loss of generality, we can suppose
them to beG-invariant.

Now, (jM ◦ j)∗λ̃ = j ∗λ = 0. Therefore, we deduce

0= (jM ◦ j)∗ dλ̃ = (jM ◦ j)∗iXλ̃ωL.
If we could assure that̄P(Xσ̃ ) ∈ T (J nh)−1(µ), then we would have

{λ, σ }M ◦ j = ωL(Xλ̃, P̄(Xσ̃ )) ◦ (jM ◦ j)
= ωL(Xλ̃, (jM ◦ j)∗P̄(Xσ̃ )) ◦ (jM ◦ j)
= (jM ◦ j)∗iXλ̃ωL(P̄(Xσ̃ )
= 0.

Therefore, if we guarantee thatP̄(Xσ̃ ) ∈ T (J nh)−1(µ), ∀σ̃ ∈ C∞G (TQ), then (10) holds. We
characterize when this occurs in the following proposition.

Proposition 4.14.Letσ be aG-invariant function onM, andσ̃ oneG-invariant extension of
σ to TQ. Then,

P̄(Xσ̃ ) ∈ T (J nh)−1(µ)⇐⇒ {σ, fi}M ◦ j = 0 16 i 6 r. (11)

Proof. Takeσ ∈ C∞G (M). We have that

P̄(Xσ̃ ) ∈ T (J nh)−1(µ)⇐⇒ ωL(P̄(Xσ̃ ), Z) ◦ jM ◦ j = 0 ∀Z ∈ T ⊥(J nh)−1(µ).

By lemma 4.6, we know thatT ⊥(J nh)−1(µ) = T ⊥M + 〈Xf̃1
, . . . , Xf̃r 〉. AsF ∩ TM ⊂ TM,

thenT ⊥M ⊂ (F ∩ TM)⊥.Thus we have thatωL(P̄(Xσ̃ ), Z) = 0 for everyZ ∈ T ⊥M. Then

P̄(Xσ̃ ) ∈ T (J nh)−1(µ)⇐⇒ ωL(P̄(Xσ̃ ), Xfi ) ◦ jM ◦ j = {σ, fi}M ◦ j = 0 16 i 6 r.
�

Consequently, in case we have

{σ, fi}M ◦ j = 0 16 i 6 r ∀σ ∈ C∞G (M) (12)

we have proved that equality (10) holds true. Conditions (12) will not be fulfilled in general. In
section 6.1.1, we will see that in the case of horizontal symmetries,k is injective and conditions
(12) are satisfied, and therefore, there is a well-defined (unique) almost-Poisson structure on
(J nh)−1(µ), so thatk : (J nh)−1(µ) −→ M̄ is an almost-Poisson morphism.

Concerning the dynamics, ifk is injective, thenk∗(0̄L,M)µ = 0̄L,M . The restriction
of the energyEL to (J nh)−1(µ) is Gµ-invariant, so it induces a function on(J nh)−1(µ),
(EL)µ : (J nh)−1(µ) −→ R. One can easily check that(ĒL)|M̄ ◦ k = (EL)µ. If, in addition,
(10) holds, we have thatk is an almost-Poisson mapping, or equivalently,

k∗(X
µ

λ̄◦k) = XMλ̄ ◦ k ∀λ̄ ∈ C∞(M̄).
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In particular, taking(ĒL)|M̄ , we have that

X
µ

(EL)µ
(λµ) = Xµ(EL)µ(λ̄ ◦ k) = k∗(X

µ

(EL)µ
)(λ̄)

= XM̄
(ĒL)|M̄

(λ̄) ◦ k = ¯0L,M(λ̄) ◦ k
= k∗((0̄L,M)µ)(λ̄) = (0̄L,M)µ(λµ)

for all λµ ∈ C∞((J nh)−1(µ)). Therefore,Xµ(EL)µ = (0̄L,M)µ. Then, we can conclude that

the evolution of any functionλµ ∈ C∞((J nh)−1(µ)) along the integral curves of(0̄L,M)µ on
(J nh)−1(µ)) is given by

λ̇µ = (0̄L,M)µ(λµ) = {λµ, (EL)µ}µ. (13)

4.1.4. The nonholonomic free particle.Here we will discuss an instructive example due to
Rosenberg [39] which has also been extensively treated in [3,4,6]. Consider a particle moving
in space, soQ = R3, subject to the nonholonomic constraint

φ = ż− yẋ.
The Lagrangian function is

L = 1
2(ẋ

2 + ẏ2 + ż2)

and the Poincaré–Cartan two-form is

ωL = dx ∧ dẋ + dy ∧ dẏ + dz ∧ dż.

The constraint manifold is the distribution

M =
〈
∂

∂x
+ y

∂

∂z
,
∂

∂y

〉
.

Consider the Lie groupG = R2 and its action onQ:

ϕ : G×Q −→ Q

((r, s), (x, y, z)) 7−→ (x + r, y, z + s).

If we consider the lifted actionϕ1 of ϕ to TQ, given by(ϕ1)g = T ϕg, then the infinitesimal
generators of this action are

V =
〈
∂

∂x
,
∂

∂z

〉
.

It is simple to verify thatL andM areG-invariant. Choose local coordinates(x, y, z, ẋ, ẏ) on
M. We find that the distributionF|M is generated by the vectors fields:

F|M =
〈
∂

∂x
+ y

∂

∂z
,
∂

∂y
,
∂

∂ẋ
,
∂

∂ẏ
,
∂

∂ż

〉
.

The symplectic vector bundleF ∩ TM is given by

F ∩ TM =
〈
∂

∂x
+ y

∂

∂z
,
∂

∂y
+ ẋ

∂

∂ż
,
∂

∂ẋ
+ y

∂

∂ż
,
∂

∂ẏ

〉
with symplectic orthogonal complement

(F ∩ TM)⊥ =
〈
∂

∂ż
− y ∂

∂ẋ
,
∂

∂z
+ ẋ

∂

∂ẏ
− y ∂

∂x

〉
.

We realize that for eachm = (x, y, z, ẋ, ẏ) ∈ M, we have

Vm ∩ Fm =
〈
∂

∂x
+ y

∂

∂z

〉
.
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Therefore, we are in the general case. Let{e1, e2} be the standard basis ofR2 and{e1, e2} its
dual basis. We define a section of the vector bundle(R2)M :

ξ̄ : M −→ (R2)M

(x, y, z, ẋ, ẏ) 7−→ e1 + ye2.

Its corresponding nonholonomic momentum function is

J nh
ξ̄
= ẋ + yż.

We can construct, from the sectionξ̄ , the vector field4:

4 = ∂

∂x
+ y

∂

∂z
.

Therefore, the momentum equation would be

d

dt
(ẋ + yż) = żẏ.

Using the constraintφ, we may rewrite this equation as

ẍ +
y

1 +y2
ẋẏ = 0. (14)

In [3], Bateset al have obtained a constant of motion for this problem, apart from the energy,
related with the symmetry group and the constraint. We are now going to see how the obtaining
of this constant fits nicely in the geometrical setting we have exposed here.

We start by calling the nonholonomic Noether theorem [11,25,40], which ensures us when
a functionϕ is a constant of motion.

Theorem 4.15.A functionϕ : TQ −→ R is a constant of the motion ofX if and only if the
energy is constant along the integral curves of the vector fieldP̄(Xϕ), that is,P̄(Xϕ)(EL) = 0.

Now, it is important to realize the following facts:

(i) P̄(4)(EL) = 4(EL) = 0, because4 ∈ F ∩ TM andEL isG-invariant,
(ii) P̄(Xφ)(EL) = ωL(XEL, P̄(Xφ)) = −X(φ) = 0, becauseX ∈ F ∩ TM.

Therefore, if we can find functionsf, g onTQ such that the vector fieldZ = f4 + gXφ
would be Hamiltonian, sayZ = Xϕ , from Theorem 4.15, we would have a constant of
the motion, due to the symmetry and the constraint. In general, the condition of ‘Z to be
Hamiltonian’ will lead us to a quite complex first-order system of partial derivative equations.
However, in this case, it is not difficult to prove (just a few computations) thatf = 1√

1+y2
and

g = − y√
1+y2

are sufficient. Consequently, we obtain the conservation law

ϕ = ẋ
√

1 +y2.

Then we choose the following section of(R2)M∗ −→ Q:

µ : Q −→ (R2)M
∗

q 7−→ µ(q) : ((R2)q)∗ → R
e1 + ye2 7→ c

√
1 +y2

whereq = (x, y, z). We have thatf : M −→ R wheref = 〈µ, ξ̄〉 ◦ τQ − J nhξ̄ is given by

f = c
√

1 +y2 − ẋ(1 +y2).
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The hypotheses of proposition 4.4 are fulfilled. A direct computation shows that the section
µ satisfies equation (7). Then(J nh)−1(µ) is a submanifold ofM. In fact,

(J nh)−1(µ) =
{
(x, y, z, ẋ, ẏ)/ẋ = c

√
1 +y2

}
= {(x, y, z, ẏ)}.

As the Lie groupG = R2 is Abelian, the coadjoint action is trivial. Then it is easily seen that
the isotropy groupGµ of the actionCoAdM isGµ = G. So we have the action

2 : Gµ × (J nh)−1(µ) −→ R
((r, s), (x, y, z, ẏ)) 7−→ (x + r, y, z + s, ẏ).

Consequently,(J nh)−1(µ) = {y, ẏ}. We obtain that

Xf = − ∂

∂x
− y ∂

∂z
−
(

cy√
1 +y2

− ż
)
∂

∂ẏ
∈ F ∩ TM.

Therefore, for allσ ∈ C∞G (M), we have

{σ, f }M ◦ j = XMf (σ) ◦ j = P(Xf )(σ ) ◦ j = Xf (σ) ◦ j =
∂σ

∂ẏ

(
cy√

1 +y2
− yẋ

)
= 0.

Moreover, the mappingk is injective:

k : (J nh)−1(µ) −→ M̄

(y, ẏ) 7−→ (y, c
√

1 +y2, ẏ).

Then, we know from the above discussion that there is a well-defined almost-Poisson structure
on (J nh)−1(µ) which is given by

{y, ẏ}µ = 1.

As conditions (9) and (12) are exactly the same (due toGµ = G), we have that{·, ·}µ is the
reduced bracket of{·, ·}M . Indeed,{·, ·}µ is integrable, that is, it is a Poisson structure.

5. The purely kinematic case

We now recover the discussion for general constrained systems (1) with symmetries. Suppose
thatVx ∩ Fx = {0} andTxM = Vx + (Fx ∩ TxM), for all x ∈ M. In principle, this leads
us to believe that the symmetries do not play an important role in reduction, because none of
them are compatible with the bundle of reaction forces. Indeed, in this case,gF = 0 and we
have no constrained momentum mapping. However, we now see that the symplectic reduction
explained in section 3 takes a nice form here due to the particular geometry involved in the
system.

5.1. Reduction

In this case, we have thatTxM = Vx ⊕ (Fx ∩ TxM), for all x ∈ M. Moreover,U = F ∩ TM,
soTM = V|M ⊕U . SinceU isG-invariant, this decomposition defines a principal connection
ϒ on the principalG-bundleρ|M : M → M̄, with horizontal subspaceUx at x ∈ M. Note,
in passing, that hereU represents a vector bundle of constant rank. In what follows we letX

denote a fixedG-invariant solution of (1) which, moreover, belongs toF . In particular, this
means thatX is horizontal, i.e.X ∈ U .
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Denote byh : TM −→ U andv : TM −→ V the horizontal and vertical projectors
associated with the decompositionTM = V|M ⊕ U , respectively. The curvature ofϒ is the
tensor field of type(1, 2) onM given by

R = 1
2[h,h]

where [, ] denotes the Nijenhuis bracket of type(1, 1) tensor fields. Taking into account that in
the present casēU = T M̄, we obtain onM̄ a two-formω̄ (which is now a genuine differential
form onM̄) and a functionH̄ such that the projection̄X of X verifies

iX̄ω̄ = dH̄ . (15)

It should be pointed out that the reduced two-formω̄, in general, need not be closed. We will
show, however, that in case the given two-formω onP is exact, one can construct a reduced
equation, equivalent to (15), but now in terms of a closed two-form onM̄.

Assumeω = dθ for some one-formθ onP . Denote byθ ′ the one-form onM defined by
θ ′ = j ∗Mθ , wherejM : M ↪→ P is the canonical inclusion. By means of the given solutionX

of (1) we can construct a one-formαX onM as follows:

αX = iX(h∗dθ ′ − dh∗θ ′) (16)

with the usual convention that, for an arbitraryp-form β, h∗β is thep-form defined by the
prescriptionh∗β(X1, . . . , Xp) = β(h(X1), . . . ,h(Xp)).

Proposition 5.1 ([10]). Assume, in addition, that the given action8 leavesθ invariant. Then,
the one-formsh∗θ ′ and αX are projectable. Moreover, the projection̄X of X, which is a
solution of (15), also satisfies the equation

iX̄dθ̄ ′h = dH̄ − αX (17)

whereθ̄ ′h andαX are the projections of the one-formsh∗θ ′ andαX, respectively.

Proposition 5.1 describes a situation where a constrained Hamiltonian system (1) with
symmetry, admits a reduction to an unconstrained system (17), but with an additional
conservative force represented byαX. Indeed, by construction, the one-formαX satisfies

iXαX = 0.

5.1.1. Čaplygin systems. We now consider an interesting special subcase of the purely
kinematic case, namely a (generalized)Čaplygin system. For such a system, the configuration
manifoldQ is a principalG-bundleπ : Q −→ Q/G, and the constraints are given by the
horizontal subspace of a principal connectionγ on π (see [17, 23]). We also have a regular
LagrangianL : TQ −→ R, which isG-invariant. It is known that the lifted action ofG on the
symplectic manifold(TQ,ωL) is Hamiltonian. Let us assume that the resulting nonholonomic
system verifies the compatibility condition. The constrained equations then read as (cf (3)):

iXωL − dEL ∈ S∗(TM0)

X|M ∈ TM.
(18)

Under the above conditions, one can easily see that there exists a well-defined Lagrangian
functionL∗ : T (Q/G) −→ R, given by

L∗(Y ) = L((Y h)q)
for anyY ∈ Ty(Q/G), whereq ∈ Q is an arbitrary point in the fibre overy ∈ Q/G andYh

denotes the horizontal lift ofY with respect toγ .



8632 J Cort́es and M de Léon

A direct computation shows that,V ∩ F = {0}. Moreover, we haveU = F ∩ TM, and
U is symplectic with respect toωL. Therefore, we deduce that

TM = V ⊕ U.
Thus, aČaplygin system indeed fits in the purely kinematic case. Moreover, one can prove
thatM̄ = M/G ∼= T (Q/G) andĒL = EL∗ .

The compatibility conditionF⊥ ∩ TM = 0 ensures the existence of a unique solution
X = 0L,M of (18) which, moreover, is a SODE. Notice that0L,M can be obtained by projecting
the unconstrained Euler–Lagrange vector field0L by means of the first projector associated
with the decomposition

T (TQ)|M = TM ⊕ F⊥.
SinceωL = −dθL, the reduced equation becomes

iX̄ωL∗ = dEL∗ − α0L,M
whereα0L,M is the projection of the one-formα0L,M , defined by (16). Observe that

i0̄α0L,M = 0

for any SODE0̄ onT (Q/G). This implies thatα0L,M is a one-form of gyroscopic type.

Remark 5.2. As was pointed out in [38],̌Caplygin considered systems with Abelian groups
of symmetries and it seemed to be Voronec who extended the theory to general Lie groups.

Remark 5.3. After the above reduction procedure, system (17) can still possess some
symmetries we have not taken into account. This is the case, for example, ofthe vertical
rolling disc [6, 10]. Consider a rolling disc of radiusR constrained to remain vertical on a
horizontal plane. The configuration space isR× S1× S1.

The dynamics of this mechanical system is described by

(i) the regular Lagrangian:

L = 1
2(mẋ

2 +mẏ2 + I1θ̇
2
1 + I2θ̇

2
2 )

wherem is the mass, andI1, I2 are moments of inertia;
(ii) the nonholonomic constraints:

φ1 = ẋ − (R cosθ1)θ̇2 = 0

φ2 = ẏ − (R sinθ1)θ̇2 = 0.

Consider the groupG = R2 and its trivial action by translations onQ:

8 : G×Q −→ Q

(r, s)× (x, y, θ1, θ2) 7−→ (x + r, y + s, θ1, θ2).

Note thatρ : Q → S1 × S1 is a principalG-bundle andM, the constraint manifold, is the
horizontal sub-bundle of a principal connection, so that the given system is aČaplygin system.
Following the above analysis we then obtain

L∗ = 1
2(I1θ̇

2
1 + (mR2 + I2)θ̇

2
2 )

ωL∗ = I1dθ1 ∧ dθ̇1 + (mR2 + I2) dθ2 ∧ dθ̇2.

In this particular case the gyroscopic one-formα0L,M = 0 andωŪ = ωL∗ . So the reduced
equation (17) becomes

iX̄ωL∗ = dEL∗ .
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Now, there are still some symmetries of this system we can consider. DenoteK for the Lie
groupS1× S1 and let us define

9 : K ×Q/G −→ Q/G

((λ1, λ2), (θ1, θ2)) 7−→ (θ1 + λ1, θ2 + λ2).

If we consider the lifted action91 of 9 to T (Q/G), given by(91)k = T9k, it is clear that
the LagrangianL∗ isK-invariant. Then, we can perform further reduction.

Thus, in general, the reduced system (17) can still enjoy more symmetries to be considered.
Let9 : K×M̄ −→ M̄ be an action onM̄ that leaves invariant the reduced HamiltonianH̄ and
the one-formθ̄ ′h. We can define a momentum mapping,J : M̄ −→ k∗, in the usual manner:
〈J (m̄), η〉 = −〈θ̄ ′h(m̄), ηM̄(m̄)〉 for m̄ ∈ M̄ andη ∈ k. It is easy to see thatiηM̄ dθ̄ ′h = dJη for
all η ∈ k. Using equation (17) and theK-invariance ofH̄ , we obtain a momentum equation

X̄(Jη) = αX(ηM̄). (19)

5.1.2. The nonholonomic free particle revisited.We will show now how the example of the
nonholonomic free particle can also be seen as aČaplygin system. With the same notations of
section 4.1.4, consider the Lie groupG = R and its trivial action by translation onQ:

8 : G×Q −→ Q

(s, (x, y, z)) 7−→ (x, y, z + s).

Note thatM is the horizontal subspace of a connectionγ on the principal fibre bundle
Q −→ Q/G, whereγ = (−y dx+dz)e, with {e} the infinitesimal generator of the translation.
Therefore, this is ǎCaplygin system. Following the above analysis, we obtain that

L∗ = 1
2((1 +y2)ẋ2 + ẏ2)

and the reduced system

iX̄ωL∗ = dEL∗ − α0L,M
whereα0L,M = ẋẏy dx − yẋ2 dy. Now we can take into account the remaining symmetry we
have ignored so far. Consider the Lie groupK = R and its action onQ/G:

9 : K ×Q/G −→ Q/G

(r, (x, y)) 7−→ (x + r, y).

It is clear thatL∗ isK-invariant. The momentum function for this action is

J : T (Q/G) −→ R∗ ∼= R
(x, y, ẋ, ẏ) 7−→ (1 +y2)ẋe.

We computeα0L,M (eT (Q/G)) = ẋẏy and using (19), we get

d

dt
((1 +y2)ẋ) = ẋẏy

which is just

ẍ +
y

1 +y2
ẋẏ = 0

that is, the same result obtained in (14).
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5.2. Reconstruction

We now discuss the problem of reconstructing the dynamics onM from the reduced dynamics
onM̄ in the case where (1) admits a unique solutionX. Suppose the flow of the reduced system
X̄ is known. Takēc(t) an integral curve of̄X starting from a point̄x ∈ M̄, and fixx ∈ ρ−1(x̄).
We want to find the corresponding integral curvec(t) of X starting fromx which projects on
c̄(t), i.e.ρ(c(t)) = c̄(t). But we must realize that the curvec(t) is just the horizontal lift of
c̄(t) starting fromx with respect to the principal connectionϒ . We prove this simple fact in
the following.

Proposition 5.4. The curvec(t) is the horizontal lift of̄c(t) starting fromx with respect to the
principal connectionϒ .

Proof. Let d(t) denote the horizontal lift of̄c(t) starting fromx. Therefore,ρ(d(t)) = c̄(t)
andd(0) = x. SinceX and X̄ areρ-related, we have thatTρ(X(d(t))) = X̄ρ(d(t)) =
X̄c̄(t) = ˙c̄(t) = Tρ(ḋ(t)). Therefore,ḋ(t) − X(d(t)) is vertical. But it is also horizontal,
becauseX ∈ U . Then we deduce thaṫd(t) = X(d(t)). �

Thus, in the vertical case, the reconstruction problem is just a horizontal lift operation. We
now briefly recall the concepts ofgeometric, dynamic and total phasesfor the reconstruction
process [34]. The geometric phase is just the holonomy of the pathc̄(t) with respect to the
connectionϒ , that is, the Lie group elementg so thatd(1) = g ·d(0). In general, we will have
thatc(t), the integral curve projecting on̄c(t), is not exactlyd(t), the horizontal lift ofc̄(t),
but a shift of this curve,c(t) = g(t) · d(t). We call the Lie group elementg(1) the dynamic
phase, and the total phase will stand forh = g(1) · g.

Corollary 5.5. In the vertical case, the geometric phase coincides with the total phase.

5.2.1. Čaplygin systems. Concerning the reconstruction process forČaplygin systems, the
above description remains valid, of course, but we can say a little more about the holonomy
of the two connections,γ andϒ . The following diagram will be helpful:

TM = U ⊕ Vρ −→ T M̄ ∼= Ū
↓ ↓

TQ = M ⊕ Vπ −→ T (Q/G) ∼= M̄
↓ ↓
Q −→ Q/G.

Let c̄(t) be the integral curve of̄X starting fromx̄. Fix x ∈ ρ−1(x̄) and consider its
horizontal lift, c(t), with respect toϒ starting fromx. We have proved thatc(t) is precisely
the integral curve ofX starting fromx which projects on̄c(t). Let q̄(t) be the projection of
c̄(t) to Q/G, q̄(t) = πQ/G(c̄(t)). We denote byqM(t) its horizontal lift with respect toγ .
Finally, we writeq(t) = πQ(c(t)). Then we haveπ(q(t)) = π ◦πQ(c(t)) = πQ/G◦ρ(c(t)) =
πQ/G(c̄(t)) = q̄(t). Sincec(t) is an integral curve of a SODE, we havec(t) = q̇(t) ∈ M. So
we have proved thatq(t) is just the horizontal lift of̄q(t), i.e.q(t) = qM(t).

Now, we study the holonomy of̄c(t). Let us suppose thatc̄(t) is a closed loop. We have
c̄(0) = c̄(1) = x̄ andc(0) = x. Consequently,c(1) = gx andg is the geometric phase, which
is, in the vertical case, the total phase. Asc(t) = q̇M(t), we have thaṫqM(1) = gq̇M(0)which
in particular implies thatqM(1) = gqM(0). We have then proved the result of the following
proposition.

Proposition 5.6. The geometric phase (respect toϒ) of a closed integral curve of̄X is the
same as the geometric phase (respect toγ ) of its projection toQ/G.
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5.2.2. Plate with a knife edge on an inclined plane.The configuration space of the plate
with a knife edge on an inclined plane isQ = R2 × S1 with coordinates(x, y, θ) (see, for
example, [38] for more details). This system is determined by the following data:

• the regular Lagrangian functionL:

L : TQ −→ R
(x, y, θ, ẋ, ẏ, θ̇ ) 7−→ 1

2(ẋ
2 + ẏ2) + 1

2k
2θ̇2 + gx sinα

where the mass of the plate is assumed equal to unity;
• the nonholonomic constraint function:

φ = ẏ − ẋ tanθ.

Consider the Lie groupG = R and its trivial action by translation onQ:

8 : R×Q −→ Q

(r, (x, y, θ)) 7−→ (x, y + r, θ)

with associated fibration

ρ : Q −→ R× S1

(x, y, θ) 7−→ (x, θ).

Note thatρ : Q −→ R×S1 is a principal bundle, with structure groupG, andM, the constraint
submanifold, is the horizontal distribution of a principal connection,γ . The connection one-
form isγ = dy − tanθ dx. Therefore, this is ǎCaplygin system.

The corresponding reduced system (17) is described by:

• the reduced LagrangianL∗:
L∗ : T (R× S1) −→ R

(x, θ, ẋ, θ̇ ) 7−→ 1
2(sec2 θẋ2 + k2θ̇2) + gx sinα

• the gyroscopic one-form:

α0L,M = tanθ sec2 θ [(ẋ)2 dθ − ẋθ̇ dx].

After some calculations, one finds the following equations of motion:

ẍ = −ẋθ̇ tanθ + g sinα cos2 θ

θ̈ = 0.

We obtain thatθ = ωt + θ0, whereω andθ0 are constants. Consequently, a solution for
the initial conditionsθ0 = x0 = ẋ0 = 0 andθ̇0 = ω is

x = g

2ω2
sinα sin2ωt

θ = ωt.
This curveq̄(t) = (x(t), θ(t)) is closed since

q̄(0) = q̄(2π/ω).
The horizontal liftq(t) = qM(t) of the curveq̄(t) with initial conditionsθ0 = x0 = ẋ0 =
y0 = ẏ0 = 0 andθ̇0 = ω is

x = g

2ω2
sinα sin2ωt

y = g

2ω2
sinα[ωt − 1

2 sinωt ]

θ = ωt.
Observe thatq(0) = (0, 0, 0) andq(2π/ω) = (0, gπ

ω2 sinα, 0). Therefore, the geometric
phase of the curvēq(t) is gπ

ω2 sinα.
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6. The case of horizontal symmetries

The assumption now is thatVx ∩ Fx = Vx , for all x ∈ M or, equivalently,V|M ⊂ F . In
particular, every infinitesimal generator of the given group action then yields a horizontal
symmetry. Thus, in this case, all the symmetries are compatible with the bundleF . This leads
us to suspect that we can perform a holonomic-type reduction. Note, also, that an unconstrained
Hamiltonian system with symmetry can be regarded as a special subcase of this case, since we
then haveM = P , F = T P and, obviously,V ⊂ T P .

6.1. Reduction

For the further analysis of this case we assume, in addition, that the given symplectic action
8 on P is a Hamiltonian action, in the sense that it admits anAd∗-equivariant momentum
mappingJ : P −→ g∗, such that for allξ ∈ g, iξP ω = d〈J, ξ〉. It follows from the definition
of the momentum mapping thatξP = XJξ , whereJξ (x) = J (x)(ξ) for all x ∈ P . Taking
into account that, by assumption,V|M ⊂ F , we find that for any solutionX of (1), along the
constraint submanifoldM we have

X(Jξ ) = 0

i.e., the components of the momentum mapping are conserved quantities for the constrained
dynamics. This is a version of Noether’s theorem for constrained systems. (For the case of
mechanical systems with nonholonomic constraints, see, in this respect, [6,11,40].)

Let µ ∈ g∗ be a regular value ofJ . Since the action,8, of G onP is free and proper,
we have that the isotropy groupGµ acts freely and properly on the level setJ−1(µ). It is
known (see [1,30,36,37]) that under these conditions(Pµ = J−1(µ)/Gµ, ωµ) is a symplectic
manifold, whereωµ is the two-form defined by

π∗µωµ = j ∗µω
with πµ : J−1(µ) −→ Pµ the canonical projection, andjµ : J−1(µ) ↪→ P the natural
inclusion.

Imposing a condition of clean intersection ofM and J−1(µ), we have thatM ′ =
M ∩ J−1(µ) is a submanifold ofJ−1(µ) which isGµ-invariant. Passing to the quotient
we then obtain a submanifoldMµ = M ′/Gµ of Pµ (that, with the adequate embedding, can
be identified withM̄ ∩ Pµ). Next, we can define a distributionF ′ onP alongM ′ by putting

F ′x ′ = Tx ′(J−1(µ)) ∩ Fx ′ ∀x ′ ∈ M ′

and we now make the further simplifying assumption thatF ′ has constant rank. It is obvious
thatF ′ is aGµ-invariant sub-bundle ofT P|M ′ and, hence, it projects onto a sub-bundleFµ
of T Pµ alongMµ. Finally, since the restriction of the HamiltonianH to J−1(µ) is also
Gµ-invariant, it induces a functionHµ onPµ.

Theorem 6.1 ([10]).Suppose thatX is aG-invariant solution of (1). Then,X induces a vector
fieldXµ onMµ, such that

(iXµωµ − dHµ)|Mµ
∈ F 0

µ

Xµ ∈ TMµ.
(20)

In the case of horizontal symmetries we have thus proved that, under the appropriate
assumptions, the given constrained problem on(P, ω) reduces to a constrained problem on
(Pµ, ωµ).
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6.1.1. Lagrangian systems.Let us suppose that we have a nonholonomic Lagrangian system
which fulfils the compatibility condition. Next, we show thatk : (J nh)−1(µ) −→ M̄ is
injective and conditions (12), obtained in section 4.1.3 to perform a kind of reduction via the
mappingk, are satisfied.

Proposition 6.2. Let k : (J nh)−1(µ) = Mµ −→ M̄ be the composition ofkµ : Mµ −→
M/Gµ andp : M/Gµ −→ M̄. Then we can define onMµ a unique almost-Poisson structure
so thatk is an almost-Poisson mapping.

Proof. It is an easy exercise to prove thatk is injective in the case of horizontal symmetries.
From the analysis of section 4.1.3, we know that it is sufficient to prove conditions (12). Now,
takingξ1, . . . , ξr as a base of the Lie algebrag, we have thatfi = 〈µ, ξi〉 − Jξi , 1 6 i 6 r.
Givenσ ∈ C∞G (M), we deduce that

{σ, fi}M ◦ j = (ξi)TQ(σ̃ ) ◦ jM ◦ j = (ξi)M(σ ) ◦ j = 0

due to theG-invariance ofσ . �

On the other hand, we have that the symplectic distributionF ∩TM induces a symplectic
distributionFµ ∩ TMµ in T Pµ = T (TQ)µ, that is

T (TQ)µ|Mµ
= (Fµ ∩ TMµ)⊕ (Fµ ∩ TMµ)

⊥µ

with induced projectors for each̄vq ∈ Mµ

P̄µ : Tv̄q (TQ)µ −→ ((Fµ)v̄q ∩ Tv̄qMµ) Q̄µ : Tv̄q (TQ)µ −→ ((Fµ)v̄q ∩ Tv̄qMµ)
⊥µ .

The above descomposition induces an almost-Poisson bracket{·, ·}Mµ
on Mµ, in the same

manner as we previously did forM in section 4.1.2. More precisely, givenλµ, σµ : Mµ −→ R,
take λ̃µ, σ̃µ arbitrary extensions to(TQ)µ, λ̃µ ◦ jMµ

= λµ, σ̃µ ◦ jMµ
= σµ, with

jMµ
: Mµ ↪→ (TQ)µ, and define

{λµ, σµ}Mµ
= (ωL)µ(P̄µ(Xµλ̃µ), P̄µ(X

µ

σ̃µ
)) ◦ jMµ

.

Indeed, we have that{·, ·}Mµ
= {·, ·}µ, as we prove in the following.

Theorem 6.3.Consider(Mµ, {·, ·}Mµ
) and (M̄, {·, ·}M̄ ). Thenk : Mµ −→ M̄ is an almost-

Poisson mapping.

Proof. First of all, consider the following commutative diagrams:

(J nh)−1(µ) = M ′ j−→ M

i ↓ ↓ jM
J−1(µ)

jµ−→ TQ

M ′
i−→ J−1(µ)

πM ′ ↓ ↓ πµ
Mµ

jMµ−→ (TQ)µ.

Now, the proof is a careful exercise of equalities. Indeed, givenλµ, σµ : Mµ −→ R, we have

{λµ, σµ}µ ◦ πM ′ = {λ̄, σ̄ }M̄ ◦ k ◦ πM ′ = {λ, σ }M ◦ j = ωL(P̄(Xλ̃), P̄(Xσ̃ )) ◦ jM ◦ j
= (jM ◦ j)∗ωL(P̄(Xλ̃), P̄(Xσ̃ )) = (πµ ◦ i)∗(ωL)µ(P̄(Xλ̃), P̄(Xσ̃ ))
= (ωL)µ(P̄µ(Xµλ̃µ), P̄µ(X

µ

σ̃µ
)) ◦ jMµ

◦ πM ′ = {λµ, σµ}Mµ ◦ πM ′ .
�
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Remark 6.4. It should be noted that from the general discussion in section 4.1, it is concluded
that for nonholonomic Lagrangian systems which fit in the horizontal case, theorem 6.3 is
the utmost one can say. That is, while conditions (12) are always fulfilled, conditions (9)
are no longer satisfied in general. This means, in particular, that the almost-Poisson bracket
{·, ·}Mµ

is not the reduced bracket of{·, ·}M , as it was stated in [9] (theorem 8.2). However,
following (13), we know that for allλµ ∈ C∞(Mµ), its evolution along the integral curves of
the dynamics is given by

λ̇µ = (0L,M)µ(λµ) = {λµ, (EL)µ}Mµ
.

6.2. Reconstruction

As far as the reconstruction of the dynamics is concerned, we observe that, unlike in the purely
kinematic case, we first have to select an arbitrary connection on the principalGµ-bundle
M ′ −→ Mµ. This connection will enable us to subsequently lift the integral curves of the
reduced system fromMµ toM ′.

More precisely, letϒ be such a principal connection. We start withcµ(t), an integral
curve ofXµ with the initial conditioncµ(0) = mµ,mµ ∈ Mµ. We choosem ∈ (πµ)−1(mµ)

and wish to find the unique integral curvec(t) ofX which satisfiesc(0) = m. AsX andXµ are
πµ-related,c(t) projects oncµ(t). We will proceed in a similar way as in Marsdenet al [34]
for the holonomic reconstruction.

Considerd(t) the horizontal lift ofcµ(t) with d(0) = m, that is,πµ(d(t)) = cµ(t) and
ϒ(ḋ(t)) = 0. Putc(t) = g(t)d(t), for some curveg(t) in Gµ, with g(0) = e. As c(t) is an
integral curve ofX, we have thatX(c(t)) = ċ(t), i.e.,

X(g(t)d(t)) = ˙(g(t)d(t)) = g(t)ḋ(t) + g(t)((g−1(t)ġ(t))Md(t)).

AsX(g(t)d(t)) = g(t)X(d(t)), we conclude

X(d(t)) = ḋ(t) + (g−1(t)ġ(t))Md(t). (21)

So we can factorize the reconstruction process in two steps:

(i) To find a curveξ(t) in gµ so that

ξ(t)M(d(t)) = X(d(t))− ḋ(t).
(ii) To find a curveg(t) in Gµ so that

ġ(t) = g(t)ξ(t) g(0) = e.
Making use of the connectionϒ , we can replace (i) by

(i ′) ξ(t) = ϒ(ξ(t)M(d(t))) = ϒ(X(d(t))− ḋ(t)) = ϒ(X(d(t))).

Cotangent bundles. We now discuss the case in whichP = T ∗Q, andG acts freely onQ,
φ : G ×Q −→ Q, and therefore onP by cotangent lift,8 : G × P −→ P . We will show
below that if the bundleςµ : Q −→ Q/Gµ has a connection, for a certainµ to be specified,
this induces a connection onρ : M ′ −→ Mµ.

The momentum mappingJ : T ∗Q −→ g∗ for the Hamiltonian action8 is defined
by 〈J (αq), ξ〉 = 〈αq, ξQ(q)〉 = 〈θ(αq), ξT ∗Q(αq)〉, where αq ∈ T ∗q Q, ξ ∈ g. Let
µ ∈ g∗ be a regular value ofJ and suppose again that its isotropy groupGµ acts freely
and properly on the level setJ−1(µ). As before, we consider the symplectic manifold
(T ∗Q)µ = (J−1(µ)/Gµ, ωµ). We denote byµ′ = µ|gµ ∈ g∗µ, the restriction ofµ to gµ.
Assumeςµ : Q −→ Q/Gµ is a principalG-bundle and letγ ∈ 31(Q, gµ) be a connection
form on it. We recall now the cotangent bundle reduction theorem of Satzer, Marsden and
Kummer (see [1,21]).
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Theorem 6.5.Let� be the curvature ofγ and letB the pull-back byτ : T ∗(Q/Gµ) −→
Q/Gµ of the closed two-form onQ/Gµ induced by theµ′-component of�, µ′ ·� ∈ 32(Q).
EndowT ∗(Q/Gµ) with the symplectic formω−B, whereω is the canonical two-form of the
cotangent bundle. Then(T ∗Q)µ is symplectically embedded in(T ∗(Q/Gµ), ω − B) and its
image is a vector sub-bundle with baseQ/Gµ. This embedding is onto if and only ifg = gµ.

The following conmutative diagram will help us to handle the theorem:

M ′ −→ J−1(µ) −→ J−1
µ (µ′)

tµ−→ J−1
µ (0) −→ T ∗Q

τQ−→ Q

↓ ↓ ↓ ↓
Mµ −→ (T ∗Q)µ

ϕµ−→ T ∗(Q/Gµ)
τQ/Gµ−→ Q/Gµ

whereJµ : T ∗Q −→ g∗µ, tµ : J−1
µ (µ′) −→ J−1

µ (0) andϕµ : (T ∗Q)µ −→ T ∗(Q/Gµ)

are respectively defined byJµ(αq) = J (αq)|gµ , tµ(αq) = αq − µ′ · γq(·) andϕµ(ᾱq) =
αq − µ′ · γq(·) for all αq ∈ T ∗Q.

The connectionγ ∈ 31(Q, gµ) induces a connectionϒ ∈ 31(M ′, gµ) by pull-back,
ϒ = (τQ · tµ)∗γ so thatϒαq (Uαq ) = γq(T τQ · Uαq ) for all Uαq ∈ TαqM ′. Thus now, we can
rewrite (i′) above as

(i ′) ξ(t) = ϒ(X(d(t))) = γ (T τQ ·X(d(t))) = γ (FH(d(t)))
whereFH : T ∗Q −→ TQ is the fibre derivative of the HamiltonianH : T ∗Q −→ R.

6.2.1. Lagrangian systems.If we have a Lagrangian of mechanical type,L = T −V , where
T is the kinetic energy of a Riemannian metricg onQ, andV is a potential energy, we know
(see [23]) that the nonholonomic Lagrangian system fulfils the compatibility condition. Making
use of the metricg, we can define a natural connection, to be called themechanical connection,
on the principal fibre bundleςµ : Q −→ Q/Gµ as follows: we takeVςµ = kerT ςµ and
considerH = V⊥ςµ , the orthogonal complement ofVςµ with respect to the metricg. We define
γmechas the connection onQ −→ Q/Gµ whose horizontal subspace isH.

We know thatFH(αq) = α
]
q , whereH is defined fromEL through the Legendre

transformation and] denotes the natural pairing of vectors and co-vectors ofQ induced by the
metricg. Again, we can rewrite (i ′) in the following form:

(i ′) ξ(t) = γmech(q(t))(FH(d(t))) = γmech(q(t))(d(t)
])

with q(t) = τ(d(t)).
If we define for eachq ∈ Q theµ-locked inertia tensor(see [33]),Iµ(q) : gµ −→ g∗µ, by

〈Iµ(q)ζ, η〉 = 〈ζQ(q), ηQ(q)〉, we can verifyγmech(vq) = I−1
µ (q)J (v

[
q), with vbq the co-vector

associated tovq through the metric. We then rewrite (i′) as,

(i ′) ξ(t) = γmech(q(t))(d(t)
]) = I−1

µ (q(t))(µ).

Compare this result with those in [6].

7. A special subcase of the general case

Now we are going to consider the case in which the bundlegF is trivial, that is,gx = g0,
∀x ∈ M. Following [9], we can prove the following proposition.

Proposition 7.1. g0 is an ideal ofg which is invariant with respect to the adjoint representation.
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Next we considerG0, the normal connected subgroup ofG with Lie algebrag0 and
80 : G0×P −→ P , the restricted action toG0. For this action, it is clear thatV0|M ⊂ F ∩TM,
so we are in the case of horizontal symmetries. Now we are going to proceed in the way
described above.

As before, we can assume that80 on P is a Hamiltonian action, this is, it admits an
Ad∗-equivariant momentum mappingJ : P −→ g∗0, such that for allξ ∈ g0, iξP ω = dJξ .
Let µ ∈ g∗0 be a regular value ofJ and suppose thatG0

µ, its isotropy group inG0, acts freely
and properly on the level setJ−1(µ). Under these conditions,(Pµ = J−1(µ)/G0

µ, ωµ) is a
symplectic manifold. We also suppose thatM andJ−1(µ) have a clean intersection,M ′ =
M∩J−1(µ), which is aG0

µ-invariant submanifold ofJ−1(µ). We then considerMµ = M ′/G0
µ.

We can define a distributionF ′ onP alongM ′ by puttingF ′x ′ = Tx ′(J−1(µ))∩ Fx ′ , ∀x ′ ∈ M ′
and in addition assume thatF ′ has constant rank. Again,F ′ isG0

µ-invariant and it projects onto
a sub-bundleFµ of T Pµ alongMµ. Finally, with the functionHµ induced by the restriction
of the HamiltonianH to J−1(µ), we have all the ingredients to apply theorem 6.1 and obtain
the following reduced constrained problem on(Pµ, ωµ):

(iXµωµ − dHµ)|Mµ
∈ F 0

µ

Xµ ∈ TMµ.
(22)

So far, we have reduced the constrained problem by the horizontal symmetries and
have again obtained a constrained problem. We will now investigate what happens with
the symmetries we have not used yet. In the following, we are going to take them into account.

For this purpose, we consider the action9 : Gµ · G0/G0 × Pµ −→ Pµ defined by
9(ḡ, p̄) = 8(g, p). Note that this action is well defined because we are not treating with all
the remaining symmetriesG/G0, but only with the adequate ones toPµ. Indeed, we prove the
following lemma.

Lemma 7.2. The mapping9 is well defined.

Proof. We must verify that given̄g, h̄ ∈ Gµ · G0/G0 and p̄, q̄ ∈ Pµ so thatḡ = h̄ and
p̄ = q̄, we have9(ḡ, p̄) = 9(h̄, q̄). SinceGµ · G0/G0

∼= Gµ/Gµ ∩ G0 = Gµ/G
0
µ, we

can consider̄g, h̄ as elements of this latter group, so we have thath−1g ∈ Gµ ∩G0. We also
have that there existsi ∈ G0

µ such thatp = iq. Thengp = giq = gih−1hq. Moreover,

gih−1 = (ih−1g)g
−1 ∈ G0, becausei andh−1g are inG0, and this group is normal inG.

Clearlygih−1 ∈ Gµ, so finally we have thatgih−1 ∈ G0
µ. We have obtainedgp = hq, i.e.,

9(ḡ, p̄) = 9(h̄, q̄). �

In a similar way, we can check easily that9 is a symplectic action onPµ and thatMµ,Fµ
andHµ are allGµ/G

0
µ-invariant. We denoteρµ : Pµ −→ P̄µ the canonical projection for9

andVµ = kerTρµ.
Our aim is to prove that, under the assumptionTMµ = (Fµ ∩ TMµ) + Vµ|Mµ

, the
constrained Hamiltonian problem with symmetries on(Pµ, ωµ) fits in the purely kinematic
case. For this purpose, we now identify the fundamental vector fields for the action9.

Lemma 7.3. Let ζ + gµ ∩ g0 be an element ofgµ/gµ ∩ g0, the Lie algebra ofGµ/G
0
µ. Then

(ζ + gµ ∩ g0)Pµ(p̄) = T πµζJ−1(µ)(p) ∀p ∈ J−1(µ)

whereπµ : J−1(µ) −→ Pµ is the projection mapping associated to the action ofG0
µ onJ−1(µ)

andζJ−1(µ) is the fundamental vector field corresponding to the action ofGµ onJ−1(µ).
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Proof. We have

(ζ + gµ ∩ g0)Pµ(p̄) =
(

d

dt

)
|t=0

9(exp(tζ + gµ ∩ g0), p̄) =
(

d

dt

)
|t=0

9(expµ tζ , p̄)

=
(

d

dt

)
|t=0

(expµ tζ · p) = T πµζJ−1(µ)(p).

�
Now, we are in a position to prove the former statement.

Proposition 7.4. If TMµ = (Fµ∩TMµ)+Vµ|Mµ
, the reduced constrained Hamiltonian system

(22), considered with the action9 onPµ, fits in the purely kinematic case.

Proof. We must prove that(Vµ)x̄ ∩ (Fµ)x̄ = {0}, ∀x̄ ∈ Mµ. Suppose that(ζ +gµ∩g0)Pµ(x̄) ∈
(Fµ)x̄ for somex̄ ∈ Mµ. Recall thatFµx̄ = T πµF ′x . Then, we have that there existsY ∈ F ′x
such thatT πµ(Y ) = (ζ +gµ∩g0)Pµ(x̄) = T πµ(ζJ−1(µ)(x))which, in turn, implies there exists
ξ ∈ g0

µ = gµ∩g0 such thatζJ−1(µ)(x) = Y +ξJ−1(µ)(x). Therefore,(ζ−ξ)J−1(µ)(x) = Y , which
givesζ−ξ ∈ gx = g0. Obviously,ζ−ξ ∈ gµ. Then,ζ +gµ∩g0 = ξ +gµ∩g0 = 0+gµ∩g0.�

Next, we proceed as in section 5.1. We obtain a principal connectionϒ on the principal
(Gµ/G

0
µ)-bundleρµ|Mµ

: Mµ −→ M̄µ, with horizontal subspaceUx̄ = (Fµ)x̄ ∩Tx̄Mµ at each
point x̄ ∈ Mµ.

If we assume again that(P, ω) is an exact symplectic manifold, withω = dθ , we can
define in a natural mannerθµ so thatωµ = dθµ. Obviously,θµ is Gµ/G

0
µ-invariant. Let

θ ′µ = j ∗Mµ
θµ, wherejMµ

: Mµ ↪→ Pµ is the canonical inclusion. Then proposition 5.1 applies
to the reduced constrained Hamiltonian problem (22) to give

iX̄µ ω̄ = dH̄µ − αXµ (23)

whereαXµ is the projection ofαXµ , with αXµ = iXµ(h
∗ dθ ′µ − dh∗θ ′µ), andω̄ = d(θ̄ ′µ)h,

with (θ̄ ′µ)h the projection ofh∗θµ.

Remark 7.5. In general, the condition ‘gx does not depend onx ∈ M ’ seems to be quite
restrictive. In [40],Śniatycki definedg′ ⊂ g by

g
′ = {ξ ′ ∈ g| there exists a constant sectionξ̄ of g

F with ξ̄ (x) = ξ ′, ∀x ∈ M}.
In other words,g′ consists of those elements ofg such that its corresponding infinitesimal
generator of the induced action onM is a horizontal symmetry. Ifgx does not depend on
x ∈ M, it is clear thatg0 = g′.

Śniatycki claims thatg′ is an ideal ofg and then he considers the normal connected
subgroupG′ of G with Lie algebrag′. The reduction process is parallel to the one performed
here until we reach proposition 7.4, which will not be true in general.

As in the case of reduction, reconstruction of the dynamics is a two-step process: first,
implementation of a purely kinematic-type reconstruction and then of a horizontal-type one.

7.1. The nonholonomic free particle modified

Next we are going to treat the example of the nonholonomic free particle, but with a different
constraint. As before, we have a particle moving in space, subject to the nonholonomic
constraint

φ = ż− xẋ.
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This constraint is semi-holonomic [2] and, consequently, the problem admits an unconstrained
description on the leaves of the foliation defined onQ. Anyway, we will ignore this point, just
to illustrate the two-step reduction procedure developed above.

The Lagrangian function is

L = 1
2(ẋ

2 + ẏ2 + ż2)

and the constraint submanifold is defined through the distribution

M =
〈
∂

∂x
+ x

∂

∂z
,
∂

∂y

〉
.

Consider the Lie groupG = R2 and its action onQ:

ϕ : G×Q −→ Q

((r, s), (x, y, z)) 7−→ (x, y + r, z + s).

If we consider the lifted action8 of ϕ to TQ, given by8g = T ϕg, then the infinitesimal
generators of this action are{

∂

∂y
,
∂

∂z

}
.

It is a simple verification to see thatL andM areG-invariant. Choose local coordinates
(x, y, z, ẋ, ẏ) onM. We find that the distributionF|M is generated by the vectors fields:{

∂

∂x
+ x

∂

∂z
,
∂

∂y
,
∂

∂ẋ
,
∂

∂ẏ
,
∂

∂ż

}
.

We realize that for eachm = (x, y, z, ẋ, ẏ) ∈ M, we have

Vm ∩ Fm =
〈
∂

∂y

〉
.

Note that the fibre(R2)m does not depend on the base pointm ∈ M. Then, the bundle(R2)F

is trivial and we are just in the special subcase of the general case treated in this section. With
the notations we have been using,g0 = R×{0} andG0 = R×{0}. Let {e1, e2} be the standard
basis ofR2 and{e1, e2} its dual basis. Now, consider80, the restricted action of8 toG0. 80

is Hamiltonian, with momentum mapping:

J : TR3 −→ R∗

(x, y, z, ẋ, ẏ, ż) 7−→ ẏe1.

Letµ = ae1 ∈ R∗. We have thatG0
µ = R andJ−1(µ) = {(x, y, x, ẋ, ż)}. Therefore,

(TR3)µ = {(x, z, ẋ, ż)} (ωL)µ = dx ∧ dẋ + dz ∧ dż.

We note thatM andJ−1(µ) have a clean intersectionM ′ = {(x, y, z, ẋ)} so that

Mµ = {(x, z, ẋ)}.
After some computations, we find that

Fµ =
〈
∂

∂x
+ x

∂

∂z
,
∂

∂ẋ
,
∂

∂ż

〉
Fµ ∩ TMµ =

〈
∂

∂ẋ
+ x

∂

∂ż
,
∂

∂x
+ x

∂

∂z
+ ẋ

∂

∂ż

〉
.

Finally, we obtain(EL)µ = 1
2(ẋ

2 + ż2 + a2). With all these ingredients, we pose the
following constrained problem (22) on((TR3, (ωL)µ)):

(i(0L,M)µ(ωL)µ − d(EL)µ)|Mµ
∈ F 0

µ

(0L,M)µ ∈ TMµ.
(24)
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Now, we investigate what happens with the symmetries we have not used yet. We have
thatGµ = R2 and consequently,(Gµ +G0)/G0

∼= R. Then we consider the action

9 : (Gµ +G0)/G0 × (TR3)µ −→ (TR3)µ

(s, (x, z, ẋ, ż)) 7−→ (x, z + s, ẋ, ż).

The canonical projectionρµ is given by

ρµ : (TR3)µ −→ (TR3)µ

(x, z, ẋ, ż) 7−→ (x, ẋ, ż)

and its restriction toMµ is

ρµ|Mµ
: Mµ −→ M̄µ

(x, z, ẋ) 7−→ (x, ẋ).

The vertical bundle of the action9 is

Vµ =
〈
∂

∂z

〉
.

For eachmµ ∈ Mµ we have that

(Vµ)mµ ∩ (Fµ)mµ = {0}.
Moreover, TMµ = Fµ|Mµ

∩ TMµ + Vµ|Mµ
. Therefore, the constrained system (24) on

((TR3)µ, (ωL)µ) fits in the purely kinematic case, that is, we obtain a principal connectionϒ on
the principalR-bundleρµ|Mµ

: Mµ −→ M̄µ, with horizontal subspaceUmµ = (Fµ)mµ∩TmµMµ

at each pointmµ ∈ Mµ. The connection one-form is

ϒ = (dz)e
where{e} is the canonical basis of the Lie algebra(gµ + g0)/g0

∼= R. We have that(TR3, ωL)

is an exact symplectic manifold, so we can define

θµ = −ẋ dx − ż dz

and(ωL)µ = dθµ. We check thatθ ′µ = j ∗Mµ
θµ = −ẋ(dx + x dz). Next, we calculate the

one-formα(0L,M)µ onMµ defined by the prescriptionα(0L,M)µ = i(0L,M)µ(h
∗dθ ′µ − dh∗θ ′µ).

First, we have that

h∗dθ ′µ = dh∗θ ′µ = (1 +x2) dẋ ∧ dx

and consequently,α(0L,M)µ = 0. Projecting ontoM̄µ, we obtain that

ω̄ = (1 +x2) dx ∧ dẋ

(EL)µ = 1
2(ẋ

2(1 +x2) + a2).

Now, following (23), we can write, from the constrained problem (24), the reduced
unconstrained system

i(0L,M)µ
ω̄ = d(EL)µ. (25)

From a straightforward computation we have that the solution(0L,M)µ of equation (25) is the
vector field

(0L,M)µ = ẋ
∂

∂x
− xẋ2

1 +x2

∂

∂ẋ
.
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[7] Cantrijn F, de Léon M and Mart́ın de Diego D 1997 The momentum equation for non-holonomic systems with

symmetryProc. Natl Conf. on Theoretical and Applied Mechanics (Leuven, 1997)(Leuven: University of
Leuven) pp 31–4
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[25] de Léon M, Marrero J C and Mart́ın de Diego D 1997 Mechanical systems with non-linear constraintsInt. J.

Theor. Phys.36973–89



Reduction and reconstruction of dynamics of nonholonomic systems8645
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[42] van der Schaft A J and Maschke B M 1994 On the Hamiltonian formulation of nonholonomic mechanical

systemsRep. Math. Phys.34225–33
[43] Vershik A M and Faddeev L D 1972 Differential geometry and Lagrangian mechanics with constraintsSov.

Phys. Dokl.1734–6
[44] Vershik A M 1984 Classical and non-classical dynamics with constraintsGlobal Analysis—Studies and

Applications I (Lecture Notes in Mathematics vol 1108)(Berlin: Springer) pp 278–301


