lopscience = [lopscienceioporg

Home Search Collections Journals About Contactus My IOPscience

Reduction and reconstruction of the dynamics of nonholonomic systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 8615
(http://iopscience.iop.org/0305-4470/32/49/304)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.111
The article was downloaded on 02/06/2010 at 07:52

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/49
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. GerB2 (1999) 8615-8645. Printed in the UK PIl: S0305-4470(99)03139-X

Reduction and reconstruction of the dynamics of
nonholonomic systems

Jorge Corést and Manuel de bt

t Instituto de Materaticas y fsica Fundamental, Consejo Superior de Investigaciones
Cienfficas, Serrano 123, 28006 Madrid, Spain
T Instituto de Materaticas y fsica Fundamental, Consejo Superior de Investigaciones
Cienfficas, Serrano 123, 28006 Madrid, Spain

E-mail: ceec306@fresno.csic.es andmdeleon@fresno.csic.es
Received 1 April 1999, in final form 5 October 1999

Abstract. The reduction and reconstruction of the dynamics of nonholonomic mechanical
systems with symmetry are investigated. We have considered a more general framework of
constrained Hamiltonian systems since they appear in the reduction procedure. A reduction
scheme in terms of the nonholonomic momentum mapping is developed. The reduction of the
nonholonomic brackets is also discussed. The theory is illustrated with several examples.

1. Introduction

The main goal of this paper is to carefully analyse the reduction and reconstruction of
nonholonomic mechanical systems with symmetry. Our starting point is the general setting for
constrained systems developed by Cangijal[10]. As stated there, this framework provides a
unifying model for the description of degenerate systems as well as of mechanical systems with
nonholonomic constraints. This generality is not fictitious because in the reduction procedure
of some particular nonholonomic systems we need to consider it.

The classical approach to nonholonomic mechanical systems is based on the method of
Lagrange multipliers (see, for example, [38] for a comprehensive treatment). The geometric
foundations of the theory were stated by Vershik and Faddeev [43, 44], and the subject has
generated a great deal of interest since the fundamental work by Koiller [17]. At this moment,
there are essentially three different, but related, approaches. A Hamiltonian approach, due
to Bates ancfSniatycki [2,4,40], which is based on the construction of an adequate bundle
along which the constraints vanish and the equations of motion continue to be Hamiltonian;
a Lagrange multipliers approach by Marsdsral [6, 18—20] which is a modern adaptation
of the classical method; and a Lagrangian approach by da bed de Diego [22, 23] (see
also [24, 25]) who worked on the tangent bundle and derived the equations of motion by
explicitly constructing a vector field yielding the dynamics. Amore general Poisson framework
was considered by Marle [31,32]. The underlying affine differential geometry of nonholonomic
systems has been investigated in [5, 14, 28, 29].

A mechanical system subject to constraints usually exhibits many symmetries, soinrecent
years there have been many attempts to adapt the well known symplectic reduction schemes
for these systems. The main difficulty stems from the fact that, in contrast to the unconstrained
case, the symmetry of a nonholonomic system does not generally produce a conserved quantity
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(moreover, if the constraints are nonlinear the energy is not, in general, a conserved quantity).
Indeed, in [25] (see also [11, 40]) a Noether theorem was proved that gives a necessary and
sufficient condition for a quantity to be conserved.

In [6], a nonholonomic momentum mapping which extends the standard one for
unconstrained systems was proposed; in fact, we first have to identify the situation of the
constraints with respect to the symmetries and then define, at each point, a subspace of the
Lie algebra of the group of symmetries. The nonholonomic momentum mapping is then the
restriction of the usual one, but pointwise. In [6], a momentum equation was given for the
variation of the momentum along the trajectories of the system. In [7,9, 10] the authors have
derived a momentum equation in terms of the dynamics.

One of our aims in this paper is to perform reduction via the nonholonomic momentum
mapping. With this purpose in mind, we introduce the notion of coadjoint representation and
the isotropy group in this nonholonomic context. Our results are the natural extension of the
symplectic reduction procedure, of course, with obvious differences and particular restrictions.
In the kinematic case, these results cannot be adapted, due to the lack of a momentum map.
In contrast, we have obtained new results in the case of horizontal symmetries by applying the
theory developed for the general case.

In any case, a key point in this study is the fact that the equations of motion for a
nonholonomic system are not Hamiltonian in the standard sense. This can be exhibited in
several ways (see [23, 25]), but one clear piece of evidence highlighting this fact is that the
evolution of the system cannot be described by using the standard Poisson bracket. Indeed, one
has to define a new bracket on the constraint submanifold which gives the correct evolution
of observables and, in particular, provides the equations of motion. This bracket does not
enjoy the Jacobi identity, so it was called the nonholonomic bracket and, in a more general
context, the almost-Poisson bracket (see [8, 15, 16, 26, 32]). The nonholonomic bracket was
first considered by Eden [12, 13] and later rediscovered by van der Schaft and Maschke [42].
The relation between nonholonomic brackets and momentum mappings was exhibited in [7].
Nonholonomic brackets have been used in recent papers to obtain reduction procedures
(see [2,9,18-20]), and they are widely used throughout this paper.

The reconstruction of the dynamics process for nonholonomic systems has been treated
in [6]. Here, we present an exposition of some new results and generalizations on the subjectin
the context of the general framework for constrained systems. We also point out the similarities
between both situations.

This paper can be summarized as follows. In section 2 we give a brief description of
the general framework for constrained Hamiltonian systems developed in [10], with special
emphasis on nonholonomic mechanics. The classification stated in [10], inspired by the paper
of Blochet al[6], is also reviewed in section 3. In section 4 we discuss the reduction scheme of
the general case by means of the nonholonomic mapping mentioned above. We have derived
three different points of view to tackle the problem and illustrate them rephrasing the example of
the nonholonomic free particle in section 4.1.4. The kinematic case is considered in section 5,
where we pay particular attention to the cas€aplygin systems. After recalling the reduction
procedure in section 5.1, we investigate the reconstruction process and obtain some nice results
in section 5.2. The case of horizontal symmetries is the subject of section 6. We briefly review
the reduction scheme and then develop a reconstruction process, paying special attention to
nonholonomic systems. In section 7, we investigate the particular case when the bundle of
‘admissible values’ for the momenta is trivial. The main motivation for this treatment is to
establish a well-posed reduction process in two steps, ‘breaking’ the symmetries to obtain first
a horizontal case and, secondly, a purely kinematic one. The underlying idea of ‘splitting’ the
reduction process can be found in [40], but in this paper we have further developed some of
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the results contained there. Throughout this paper we consider several examples and, in some
cases, compute the phases that appear in the reconstruction.

Throughout this paper, we work in the category of smooth (&) objects. For
convenience, we will not usually make a notational distinction between a (vector) bundle
over a manifold and the ring of its smooth sections, i.g" iflenotes a vector bundle over a
manifold N (for instance, a sub-bundle &fN), thenX € F simply meansthaX : N — Fis
a section off'. The only exception to this rule will be the occasional use of the not&ian
for the ring of smooth vector fields a.

2. A general framework for constrained systems

Consider a symplectic manifold®, »), a smooth functior : P — R (the Hamiltonian), an
embedded submanifold of P (the constraint submanifold) and a distributiBron P along
M, i.e. F is a vector sub-bundle df P,,. We are then interested in the following problem:
find a smooth sectioX of the restricted tangent bundleP, — M, such that

(ixw—dH)|M (S} FO
XeTM

with FO the annihilator ofF in T*Py. In particular,X then defines a vector field ov.
The problem of the existence and uniqueness of the solutions of the constrained system
(1) was solved in the following proposition (given in [10]).

Proposition 2.1.
(i) System (1) admits a solution if and only if
dHy € (FNTM*)°,
(i) If (1) has a solution, then it is unique if and only if
FtNTM =0.
Note that the existence condition can be equivalently expressed as
Xy € TM+ F*
whereXy denotes the (unconstrained) Hamiltonian vector field Bnw) with Hamiltonian
H. Hence, any solutioX of (1) is of the form
X=XumutZ (2)
for someZ € F+. An interesting special case occurs when r&nk dim M or, equivalently,
dimF, =dimT. M forall x ¢ M.

Corollary 2.2 ([10]). If rank F = dim M, then the conditiorF+ N T M = 0 implies both the
existence and unigueness of a solution of (1).

)

Under the conditions of corollary 2.2, (1) is a constrained Hamiltonian system in the sense
of Marle [31], who studied such systems in the more general setting of Poisson manifolds.

It is important to point out that if the system admits a solutdonit need not be true, in
general, that (the restriction off is a first integral ofX. In classical mechanics, for instance,
it is well known that imposing nonholonomic constraints on a conservative mechanical system
may destroy the conservation of energy (see [31]). An additional assumption on the nature of
the constraints is therefore needed to ensure conservation of energy. For a Lagrangian system
subject to nonholonomic constraints, a sufficient condition for the engrgy be conserved
is that the constraints are homogeneous which, in geometrical terms, means that the dilation
vector fieldA should be tangent to the constraint submanifold (see [8, 9, 25]). In the case of
linear constraints, this condition is always fulfilled.
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2.1. Nonholonomic Lagrangian systems

Let us consider a regular Lagrangian system with Lagranfjia? Q — R, subject to a set

of nonholonomic constraints given by(2n — m)-dimensional submanifold/ of TQ. M is

locally represented by a set of independent functignéor 1 < i < m: thatis, the constraints

are merely described by the equatiagfis= 0. For simplicity, in what follows we always
assume thaty (M) = Q, i.e. the constraints are ‘purely kinematical’ in the sense that they
do not impose restrictions on the allowable positions. The motions of the system are forced
to take place oM, and this requires the introduction of some (unknown) ‘reaction forces’.
In [23, 25], an intrinsic expression for the equations of motion was obtained, which we will
describe below.

To fix our notation, let us takgs*, g*) as the bundle coordinates @rQ. We denote by
A= q'Aaq.iA the dilation vector field ol Q and, byS = dg* ® BLA the canonical vertical
endomorphism (see [27]). Them, = —dS*(dL) is the Poinca&—Cartan two-form and,

E; = AL — L represents the energy of the system. The symplectic fornmduces two
isomorphisms o€ (T Q)-modules fnusical mappings

b 1 X(T Q) — QNT Q) i, QYT Q) — X(TQ)

whereb; (X) = ixw, andg; = bzl. Inthe absence of constraints, the dynamics is given by the
solutionT",, of the equationy, w;, = dE, i.e.I', = i, (dE.). Indeed,", is a second-order
differential equation (SODE) whose solutions are precisely the solutions of the Euler—-Lagrange
equations forL. In the presence of constraints, the equations of motion have to be modified
to take them into account.

First of all, we define a distributiofr on T Q alongM by prescribing its annihilator to
be a sub-bundle df*T Q which, along the constraint submanifald, represents the bundle
of reaction forces. More precisely, we 962 = S*(TM°). If we write Z; = 1, (S*(d¢y)),
1 <i < m, we have that'* is locally generated b, ..., Z,,.

The equations of motion for the nonholonomic mechanical system are given by

(ixwL — dEL)‘M (S S*(TMO)
X‘M eTM.

It should be pointed out that each solution of (3) (if there exists one) is automatically a SODE
alongM. This implies that, in local coordinates, the integral curveX o M are of the form
(g (1), g*(1)), wherebyg“ (¢) are solutions of the system of differential equations
8 (AL 2yt @
dr \ 9g4 g4 g4
together with the constraint equatiopgg®, ¢4) = 0, and where.” are Lagrange multipliers
to be determined.

In this case, takingP, w) = (TQ,w;), H = E;, M and F as above, we observe the
natural fitting of nonholonomic Lagrangian systems in the model (1). Looking at the problem
of existence and uniqueness of solution, we see that the hypothesis of corollary 2.2, rank
F = dim M, is fulfilled. So, the nonholonomic system will have a unique soluffoif it
satisfies the conditiof+ N 7M = 0 (the compatibility condition If the Hessian of. with
respect to the velocities is definite then this condition is automatically satisfied, which is the
usual case in mechanics sinte= T — V, whereT is the kinetic energy of a Riemannian
metric onQ, andV is the potential energy. This will be the assumption made throughout the
rest of the paper. If this is the case, a simple dimension count shows thet = F1 & 7, M,

Vx € M, which gives rise to two complementary projectors:

P T, TQ — T M Q,: T, TQ —> F.

3
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A direct calculation shows that = P(I'; ), wherel', is the solution of the associated
unconstrained or free Lagrangian system. In [4,11, 25], the following alternative approach
has been proposed. The compatibility condition is equivalent to the conditio thak M
determines a symplectic vector bundle @ Then, T, T Q = (F, N T, M) & (F, N T, M)=,

Vx € M, with induced projectors:

PoiTTQ — (F.NTM)  Q :T.TQ — (F.NT.M)"

It should be noted that, in general, the projection of the unconstrained dynBmimsP will

not produce the constrained dynamiigs,,. However, in the case of homogeneous constraints,
we have

P =PI =Tru
alongM.

3. Constrained systems with symmetry: a classification

Let us consider a general constrained system (1) with symmetries. More precisé\hdet
a symplectic actiod : G x P —> P of a Lie groupG on the symplectic manifoldP, w),
such that the submanifolttf, the Hamiltonian functior” and the vector sub-bundIg are
G-invariant. For eacly € G andx € P we put®(g, x) = ®,(x) = gx. The infinitesimal
generator (fundamental vector field) corresponding &g, with g the Lie algebra otz will
be denoted by,. The restriction ofp to M is precisely the infinitesimal generatfy of the
induced action or/.

For simplicity, we will always assume that this action is free and proper. Then, the orbit
spaceP = P/G is a differentiable manifold ang : P — P is a principal bundle with
structure groupG, wherebyp denotes the natural projection. Tleaction induced byd
on M will still be free and proper. Thus, the quotient manifdifi = M/G is a smooth
submanifold ofP. Finally, the HamiltoniarH will induce a functionH on P.

Inwhat follows, we denote by the sub-bundle of P, whose fibres are the tangent spaces
to theG-orbits, i.e.V, = T, (Gx), Vx € P or, equivalently) = kerTp. Note thaty, c .M
forall x € M,i.e.V\y C TM. For simplicity, we will also usually writ@, instead o)y,
when referring to its restriction t& (the precise meaning should be clear from the context). If
&y is a section o’ N F, we will call it a horizontal symmetrgf the given constrained system
(see [4,6]).

We now recall the symplectic reduction established by Cartiad in [10], which is just
a generalization of the one obtained by Bates@niatycki for nonholonomic systems (cf [4],
see also [18]). So, let us assume that there exigisimvariant solutionX of (1) such that
X € F. Recall that the latter assumption, in particular, implies thét/) = 0.

Remark 3.1. For nonholonomic Lagrangian systems, the condition that the constrained
dynamics should belong to the distributighis not at all restrictive. In fact, from (3), the
property thatX € F is a consequence of the fact that= ', j, is a SODE.

We define a (generalized) vector sub-buridlef T Py, by
U=(FNTM)N(VNF)* (5)

where (V N F)* is the o-complement of N F in T Py,. It is not hard to see that/ is
G-invariant and, hence, projects onto a sub-buridlef Tﬁ‘M. In general, this bundle need
not be of constant rank, i.e. it determines a generalized distributioA atong M. In the
following, however, we will always tacitly assume ttatis a genuine vector bundle ovaf.
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Let us now denote by the restriction ofw to U. Clearly,wy is alsoG-invariant and
since, moreoveli;wy = 0 for allé € V N U, the two-formwy pushes down to a two-form
wg onU (i.e.wy only acts on vectors belonging o). Similarly, the restriction of & to U,
denoted by g H, pushes down to a one-fomg]d_{ on U, which is simply the restriction of
dH to U. Note that neithew; nor d; H are differential forms om/; they are exterior forms
on a vector bundle ove¥/, with smooth dependence on the base point.

Proposition 3.2 ([10]). Let X be aG-invariant solution of (1) such that, in additioX, belongs
to F. Then, the projectioX of X ontoM is a section of/ satisfying the equation

iywg = d[] H.

Itis important to observe that, in general, the two-fasgnmay be degenerate. However,
in the case of a mechanical system with linear nonholonomic constraints, for instance, one can
prove thaiw; is nondegenerate, such th@ét, »;) becomes a symplectic vector bundle over
M (see [4]). The reduced dynamics is then uniquely determined by the equation mentioned in
proposition 3.2.

Next, following [10], we will identify three classes of constrained systems with symmetry.
This classification arises from carefully considering the interseationF’, which points out
how well the symmetries fit in the constrained system.

(i) The general caset0} C V., N F, C V,,forallx e M.
(i) The purely kinematic case’, N F, = {0} andTM =V, + (F, N T, M), forallx € M.
(iii) The case of horizontal symmetrigg; N F, = V,, for all x € M, which is equivalent to

V, C Fy,forallx e M.

4. The general case

Consider the case where at eack M, {0} C V, N F, C V,. Let us assume that the given
action of G on P is Hamiltonian, with momentum mapping If we make the corresponding
computations, we see thdtis no longer a conserved quantity for the constrained dynamics.
However, extending a procedure developed by Bletchl [6] for nonholonomic mechanical
systems (see also [7]), Cantrign al [10] derived an equation which describes the evolution
of some components of the momentum mapping along the integral curves of the constrained
system. Which components? Justthose which come from the symmetries which are compatible
with the bundleF.

More precisely, for eaclh € M, we put

g" =1{& e gléu(x) € Fy}.

Recall thaty, is just the restriction of » to the G-invariant submanifolds. We have thag*
is a vector subspace gf Putting
o =]]¢
xeM
where we use the symbd] |’ to denote the disjoint union of the vector spaces, we obtain a
(‘generalized’) vector bundle ove¥, with canonical projectiog” — M : £ € g* — x.
In general, this bundle need not have constant rank. However, for the subsequent discussion

we make the simplifying assumption thglt is a genuine vector bundle ovéf, the fibres of
which have constant dimension (independent of the base point).
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Suppose now that the symplectic fokmis exact, says» = df, and that theG-action
leavesh invariant. In such a case there always exists a well-defined momentum mapping
J : P —> g* such that

(J(x), &) = —(6:)(Ep(x)) Vx e P Véeg
(see [1]). Herewith, we can define a smooth sectiéh : M — (g7)* of the dual bundle
(g")* as follows:

JO) g — R JOW@)E) = (J(x), £).

J© will be called theconstrained momentum mappifty 7, 10]. Given a smooth sectigrnof
the vector bundlg”, we can then define a smooth functi.diéﬁ) on M according to

I =198
In addition, we can construct a vector figldon M by putting

E() =E@)Iulx)  VxeM.
Denoting the Lie derivative operator with respecB@sLz leads to the following theorem.
Theorem 4.1 ([10]). Let X be an arbitrary solution of (1). For any smooth sectipaf g* we
then have

X () = =(Lah) (X). (6)

Note that for the above result we do not have to enforce the requiremen tisat-

invariant. Equation (6) is callethe momentum equatidor the given constrained system.

In the case of linear nonholonomic constraints we precisely recover the result established by
Blochet al [6].

Remark 4.2. Suppose again that is a solution of (1) and le§ be a constant section ef’,
i.e.£(x) = &% € gforall x € M. We may then identify the corresponding vector figlavith
the infinitesimal generatdiy, and, clearly,]g(c) = (Jz0);u. Moreover, by constructior§y, is
a horizontal symmetry. The momentum equation (6) then leads to

X () = X ey = 0

i.e., we have obtained a conserved quantitx afssociated with the horizontal symmessy.
This is a manifestation of Noether’s theorem for constrained systems.

4.1. Reduction

In this section, we are going to perform reduction in the general case via the constrained
momentum mapping. To fix idease will work specifically with nonholonomic Lagrangian
systems

Remark 4.3. We note that for nonholonomic Lagrangian systems (see [6, 9]) the reduction
theory is developed in terms of the vector bunglle— Q, defined by
g! =1{& e gléro(vy) € F,, forallv, e M NT,Q}.
The nonholonomic momentum mappidt’ : 7 Q — (gM)* is then defined by
(I (vy), §) = aL(610) (vy)
forall v, € TQ andé € g?. In fact, J"" restricts naturally taV/, J‘”M” M — (gM)*.

For simplicity, we will usually denote this mapping b¥", instead ole’ﬁ. We will only
recover the distinction when confusion is possible.
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A global sectioné of the vector bundlgg” — Q induces a vector fiel on Q as
follows:

E(9) = G(@)o(g) € T, 0
for all g € Q. Then the nonholonomic momentum equation reads as
L (JE") = ().

We will investigate the relation between the vector bungiés— Q andg” — M defined
above. By definition, we have that

o= () o~

v, eMNT, Q

for all ¢ € Q. However, the fibres do not generally coincide. Indeed, let us gakeg'
andw, € M NT,Q0. We want to see i € g*¢, i.e.&ro(w,) € F,, . Applying the musical
mappingb; thls is equivalent to,, (§7¢(w,)) = (d]g)w € by (Fy ) = (FL)O Now, F* is
locally generated by the Hamiltonian vector fields . . ., Z,, (cf section 2. 1) Consequently,
we would have

dJe)w, Zi(wy) =0 1<i<m
But (dJe)w, Zi(wg) = wrEro, Zi)(wy) = —S*(Ai)w, 1o (wy)) = —(dg;)u, (§5(wg)). In
coordinates, if we writé,(g) = fA(q)aiA, this reads as

(dgi)w, (§p(wg)) = ¢l — (. D@

Then, if the constraints are Ilnear or affln(,@—(q q) only depends on the base point Q,
and¢ e g% implies¢ € g*« forallw, MﬂT Q. Thereforeg? = g* forallw, e MNT, Q.

As we have remarked above, the main difficulty (and just the point) for nonholonomic
systems is that the momenta is not a conserved quantity. So, instead of fixing a \@lieor
the momentum as in the traditional approach of symplectic reduction [1, 36, 37], we will take
aC*®-sectionu : Q —> (gM)* of the dual vector bundlég™)*, with canonical projection
7*: (g™)* — Q, which gives the momenta along the integral curves of the dynamjigs.
Now, consider the level set

(I = {vg € MIT™ (vy) = (@)}
In general,(J")~1(u) will not be a submanifold ofif. We will denote the inclusion by
JrU"™TH) = M. L
Assume that the vector bund — Q has constant rank, and chooséy, ..., &,
r linearly independent sections. Considefunctions onM fi © M — R, defined by
fi=(u, &) o Tg — J"h For each/, we denoteP; = f;~ 1(0). Then, itis not difficult to see
that

.
"MW =) Pe-
i=1
In the following proposition, we characterize the sectioand give certain conditions to

assure the existence of a differentiable structuréfof)—1(w).

Proposition 4.4.1f O is a weakly regular value of; for 1 < i < r, thenP;, is a submanifold
of M. If, in addition, the intersectioff);_, P, is clean, then(J"")~*(u) is a submanifold of
M, andT'; , is at a tangent to it if and only if

Frw((w. &) o To) = Ef (L) @)
forall1<i<r
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Proof. Because of the above discussion, it only remains to prove the equivalence. Assume that
the sectionu fulfils condition (7), namel™, » ({u, s,-)orQ—Jgh) = 8{(L),forall1<i <r.
Then, due to the nonholonomic momentum equation, we just havEthatf;) = 0. Sol',
is tangent to the level submanifol}, for eachi. As T Y = MNi_s T P, it follows
thatT'; » € T(J")~1(n). The converse is obvious. O

Remark 4.5. The hypothesis of O to be a weakly regular valuefpffor 1 < i < r, is
the natural translation of fixing a weakly regular value of the momentum in the approach by
Marsden and Weinstein [36].

In the following, we will assume the hypothesis of proposition 4.4.

Lemma 4.6. We have
T W) =T "M + (X5, ... X;).

Proof. We will now distinguish betweed™ : TQ — (gM)* and]"}‘j M — (gM)*.
We have that(Jl"M")*l(u) = (J"™~Y(uw) N M. Considerf;, the natural extension of;
t0TQ, fi = (W.&) o1y — Jgh. For eachi, denoteP; = f; '(0). Itis clear that
P; = P; N M. We also have that/"")~(n) = (/_, P;. A simple dimension count shows
that dim7 (J"")~Y(u) > dimT Q — r. Consequently, we have that difrt (J"")"1(u) < r.
Onthe other hand, iteasy to check thigt T+(J")~Y(u),1 < i <r. Then, we have proved
that 7+(J") () = (Xj,..., X;). Finally, TL(J(;Q)*l(M) =T*M+T+I"™ p) =

1 - -
TAM+ (X5, ... X}). 0

In order to perform reduction, we need a kind®@faction on the vector bundig™)*,

playing the role of the coadjoint action ¢f on g*. The following lemma enables us to go
further in that direction.

Lemma4.7.LetAd™ : G x g™ — g™ be defined byd" (g, &) = Ad, (&), foreachg € G
and¢ € g7. ThenAd" is a well-defined ‘action’ on the vector bundi& .

Proof. The unique fact to be proved is thauw" is well defined, because the properties
Ad) = Id andAdy; = Ad}' o Ady' follows directly from the fact thatld is a G-action.
Thus let us takg € G and¢ € g7, which is to say thakro (v,) € F,, forallv, € T,0 N M.
As the vector bundlg” is G-invariant, we have thatAd, (£))ro(g - v) = (Pg).(Ero(vy))
belongstar,.,, , forallv, € 7, 0NM, namely(Ad,(§))ro(w,) € Fy,,forallw, € 7,0NM.
ConsequentlyAd, (¢§) € g¢¢ andAd™ is well defined. a

In a similar way, we can consider tiig-‘action’ on (g")* defined by
CoAdM : G x (g")* — (g")*
(g, m) —> CoAd" (g, n) = CoAd,(n).

Note that the nonholonomic momentum mappifi§ : M — (g")* is G-equivariant, that
is, the following diagram:

ML gy
®, | L CoAd!
nh
M L (g

is commutative:CoAd, (J" (v,)) = J"™(g - v,), forall g € G.
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Remark 4.8. The concept of;-equivariance can be defined for general constrained dynamical
systems with symmetry in a similar way. It is clear that if the Hamiltonian action of the Lie
group has &-equivariant momentum mapping the corresponding constrained momentum
mappingJ © will also be equivariant.

The last ingredient we need to define is the ‘isotropy group’ of the aafloAd™
corresponding to the sectign: 0 — (gM)*. This is defined as

G, = {g € GICoAd" () = 1}

where we mean bfoAd" (u) = u thatCoAd} (1(¢)) = n(gq) forallg € Q. Itis not
difficult to see thaG, is a Lie subgroup o&.
Therefore, we can define@, -action on the manifol/"*)~1(.1) in the following manner:

©:G,x ("™ (w) — ("™ (w
(gv Uq) i ®(gv vq) =g Uq.

The definition of the groui6;,, and the equivariance of"* : M —s (g™)* implies that this
action is well defined, as we propose in the following lemma.

Lemma 4.9. The mapping is well defined.

Proof. Takeg € G, andv, € (J"")~(w). By the equivariance, we have thet' (© (g, v,)) =
CoAdy' (J"(vg)) = CoAd)(u(¢)). Finally, by the definition ofG ,, it follows that

O(g,v) € (") Hw). O

We can consider the actio® as the restriction tgJ")~1(u) of a G ,-action onM,
Oy : G, x M — M. Both® and®©,, will be free and proper actions, because they inherite
these properties from the original acti®n: G x T Q — T Q. Then, the orbit spaced /G,
and(J"")~Y(u) = (J")~L(n)/ G, are differentiable manifolds, and we have two principal

G,-bundlest : M — M /G, andm -1, 1 (J")"H(n) —> (J™)~L(w), respectively.

4.1.1. Akind of symplectic reductionNow, we define a (generalized) vector sub-buridle
of T M,(jumy-1(,), whose fibre at € (J"")~(w) is given by

Uy ={ve FNT.(I") 7w /o(v,&) =0, forallé € (V,), N F.}. (8)

In generalU,, need not be of constant rank. For the further discussion, however, we will
assume that/,, is a genuine vector bundle ove"")~(w). Notethaty = FNT (J"") ()N
(V. N F)*, where(V, N F)* is thew,-complement o), N F in TT Qw1 Uy, iS G-
invariant and, hence, it projects onto a sub-burtdleof 7' (M,.), i1,

Let us now denote by, the restriction otv,, to U,. Clearly,w,, is alsoG ,-invariant and
by the very definition of the vector bundlg,, the two-formw,, pushes down to a two-fori,
onU,. Similarly, the restriction of &, to U, denoted by dE;, pushes down to a one-form
d.Er onU,, which is simply the restriction of B, to U,,. Note that neithe#,, nor d,E; are
differential forms on(J"")~1(u); they are exterior forms on a vector bundle og&t")~1(w),
with smooth dependence on the base point.

Proposition 4.10.Let ', » be the solution of (3). Then, its projectio(ﬂ:L,M)M onto
(Jn)=1(w) is a section olJ, satisfying the equation

i(fL,M);LJ)M = d;l,EL'
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Proof. Similar to proposition 3.2. a

Remark 4.11. It should be noticed that, in general, the two-foim may be degenerate. So,
the reduced dynamics is not uniquely determined by the equation mentioned in proposition
4.10.

4.1.2. Almost-Poisson reduction. For nonholonomic Lagrangian systems, we know
[8,9,19,32,42] that oM the so-called nonholonomic brackgt, -}, can be constructed
in the following manner. Considér, o : M —> R and take\, ¢ arbitrary extensions t& Q,
Ao jy =X, 6o jy =0,With ji; : M — TQ. Then
{h,0lm = wL(P(X;), P(Xs)) 0 ju-
It is a routine procedure to verify that this bracket is well defined. In genferal;,; does not
verify the Jacobi identity, except if the constraints are holonomic. This almost-Poisson bracket
is very important because, in the case of homogeneous constraints, it gives the evolution of

the constrained dynamics in the following sense: for any functianC*°(M), its evolution
along integral curves df; , on M is given by

f=Tou(f)=1f ELln.

The idea of this approach is to project the nonholonomic bracket onto the reduced space
(Jrh)=1(p) via the G ,-action® : G, x (J"™)~Y(u) — (J")~L(w). For this purpose we
briefly recall the main results of the Poisson reduction stated in [35, 41], but from an almost-
Poisson point of view.

Definition 4.12. Let (M, Ay) be an almost-Poisson manifold. Then a péW, E) that
consists of a submanifol : N € M, and a vector sub-bundIE of T M|y will be called a
reductive structure ofM, A ) if the following conditions are satisfied:

(i) ENT N istangentto afoliatiotF whose leaves are the fibres of a submersionV — §;

(i) Forall ¢,y € C*(M) such thatdyp anddys vanish onE, d{g, ¥}, also vanishes of.
Furthermore, ifS above has an almost-Poisson structurg such that for any loca"*
functionsf, g on S, and any local extensions v of 7* f, n*g, withdg;z = dyrz = 0,
the relation

o, ¥Imoj={f glsom
holds true, we say thai/, N, E) is areducible triple, andsS, Ay) is the reduced almost-
Poisson manifold ofM, Ay) via (N, E).

The bundleE is sometimes called the control bundle. The following theorem characterizes
the reducible triples.

Theorem 4.13.Let (N, E) a reductive structure of the almost-Poisson manifoid, A ).
Then(M, N, E) is a reducible triple iff

tm(E®) C TN +E.

So, in our case, we have that = (J")~(u). It seems to be quite reasonable to
take asE, at each poinv, of (J"™)~1(w), just the tangent at, to the G ,-orbit of v, i.e.
E,, =T, (G, v,). ltisto easy see thatV, E) is a reductive structure, with = (J"")~1(u).
We will discuss if(M, N, E) is a reducible triple. We have that

E® = (dx/x € CZ,(M))
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wherng’;;(M) denotes thé&; ,-invariant functions oM. Then,

tm(E®) = (X} /x € C (M)).
Note thatXf denotes the Hamiltonian vector field associated with the fungtiodd — R
by the musical mappingy, induced by the almost-Poisson bivector fidlgy. But,

XY () = {v, x}u = oL(P(X5), P(X3)) © ju

= w0 (X5, P(X3)) 0 ju = P(Xz)(v)

forall v € C*(M), wherey denotes an arbitrary extension pfto 7 Q. So X)’f = P(X3)
and

tm(E®) = (P(Xp)/x € C&.(M)).

In addition,E + T (J"™)~Y(n) = T(J")~ (), then we have
En(E) S TU™ W) <= PX)(f)oj=0  1<i<r  ¥xeCg (M)

= {fi, xlmoj=0 1<i<r Vx € Cg, (M). 9)

In the purely kinematic case, as we will discuss below, the nonholonomic momentum

mapping is trivial, and therefore conditions (9) hold trivially (in fact?”) (1) = M). In
the horizontal case, we would hag¥ = g x Q, sor = dimG. Taking a constant section
r(q) = (1, q) and a basis of the Lie algebga&y, . .., &, we could writef; = (i, &) — Jg,
1<i<r.Then{fi, x}moj=—-PX;)(x)oj=(E)u(x)o j. Ingeneral, conditions (9)
will not be fulfilled, because“g‘; (M) #CZ(M).

4.1.3. Almost-Poisson mappingsThe obstruction we have found above in the horizontal case
to reduce the nonholonomic bracKet-},, to (J"")~1(w) via ((J")~1(w)), T(G,-)) leads us

to develop another reduction scheme which takes into account the whole @rokipr that
purpose, let us define the following mapping:

- ku _

ki (J™M~t(u) —> M/G, 2> M/G = M.
On M, we have the natural almost-Poisson structure inducedMbyA ). The idea of
this section is to study under which conditions there exists an almost-Poisson structure on
gJ"h)—l_(M) so thatk is an almost-Poisson mapping. In this case, then for each pair of functions
A0 0 M — R, we would have that

{)\;u Uu}u = {)_\'7 6}117[ ok
with A o k = A, andé o k = o,,. ) )

In fact, takinghy, A2 : M — R with A1 0 k = A2 0 k = A, we would have

(A, G)jgok= {2 o);0k V& € C®(M). (10)
In case ofk being injective, this equality would be a necessary and sufficient condition to
obtain an almost-Poisson bracket}, on(J"")~1(x), makingk an almost-Poisson morphism.
Moreover, in this casd;, -}, will uniquely satisfy that property. o
_ We will discuss if equality (10) is fulfilled. Equivalently, given : M — R with
Aok = 0, we want to verify if

(A o)lyok=0 Vo € C®°(M).
Consider the following commutative diagram:

It L oM —

M
ﬂ(]»th)—l(u) l, i, i, p\M
M

T ) 5 MG, D>
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Then, we ha;Ve thatO_I*M)_\, p|*M5-}M Oj = {X, 6'}M O P\m © ] = {X, 6'}M oko ﬂ(]}xh)—l(ﬂ). In
addltlon,pl’jwk e} ] =Aoko JT(Jnh)—l(u) =0.
Itis clear that
(Of2 Pl a0 j =0 = (K. G}z 0k =0,
Therefore, our question can now be presented as follows: givelwa’ (M) with A o j =0,
we want to verify if
(A, olyoj=0 Vo € CF(M).
By definition, we have thatx, o}y = L (P(X;), P(X5)) o ju, Wherei, & are arbitrary
extensions ok, o to T Q, ko jy = A, & o jy = o. Without loss of generality, we can suppose
them to beG-invariant.
Now, (jy o j)*A = j*A = 0. Therefore, we deduce
0= (juo ) di = (ju o j)¥ix,or.
If we could assure tha®(Xs) € T(J"")~1(w), then we would have
A otmoj=wL(X;, P(X5)) o (ju o j)
= wr (X3, (ju 0 j)«P(Xs)) o (jm o J)
= (jum 0 j) ix; 0L (P(X5)
=0.
Therefore, if we guarantee thR(X;) € T(J")~1(n), Y6 € CZ(T Q), then (10) holds. We
characterize when this occurs in the following proposition.

Proposition 4.14. Leto be aG-invariant function onM, ands oneG-invariant extension of
o to TQ. Then,

P(X5) € T(J"™)(n) < {0, fi}yoj=0 1<i<r (11)

Proof. Takeo € CZ’(M). We have that
P(Xs) € TU"™) ) <= wL(P(X5), Z) o juoj=0  VZeT (") (.
By lemma 4.6, we know tha&+(J")"1(n) = T+ M + (Xfooo s X7). ASFNTM CTM,
thenT-M C (F N TM)*-.Thus we have thab, (P(X;), Z) = 0 for everyZ € T+M. Then
P(X5) € TU™) (1) <= 0L (P(X5), X))o juoj={o, filmoj=0  1<i<r
O
Consequently, in case we have
{o, filmoj=0 1<i<r Vo € CX (M) (12)
we have proved that equality (10) holds true. Conditions (12) will not be fulfilled in general. In
section 6.1.1, we will see that in the case of horizontal symmetriesnjective and conditions
(12) are satisfied, and therefore, there is a well-defined (unique) almost-Poisson structure on
(J"™)=1(p), so thatk : (J"")~1(u) — M is an almost-Poisson morphism.
Concerning the dynamics, K is injective, thenk,(I'z »), = 'L m. The restriction
of the energyE,, to (J"")~1(n) is G,-invariant, so it induces a function a@"")-1(u),

(Ep)y : (J"™)~1(u) — R. One can easily check th(aEL)lM ok = (EL),. If, in addition,
(10) holds, we have thatis an almost-Poisson mapping, or equivalently,

k(XY ) = XY ok VA € C®(M).
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In particular, takingEL)lM, we have that

XéLEL)H ()\u) = XéLEL)M ()_\ ok) = k*(XéLEL)H)(X)

=X"  RNok=T,yR) ok

(EL) i
=k ((CLaw) ) = CrLa)u (i)
forall 1, € C®((J")~L(w)). Therefore,Xf‘EL)ﬂ = (Cz.m).. Then, we can conclude that

the evolution of any function, € C>®((J"")~1(u)) along the integral curves &f'; ), on
(Jm)y=1(w)) is given by

Mo = Crnu) = Do (Db (13)

4.1.4. The nonholonomic free particleHere we will discuss an instructive example due to
Rosenberg [39] which has also been extensively treated in [3,4,6]. Consider a particle moving
in space, s@ = R, subject to the nonholonomic constraint
¢ =z—yx.
The Lagrangian function is
L=306%+y%+2%)
and the Poinc&-Cartan two-form is
wp =dx Adx +dy Ady +dz A dz.
The constraint manifold is the distribution
ad a 0
M=(—+y—,—).
0x dz dy
Consider the Lie groug = R? and its action orQ:
p:GxQ0— 0
((rys), x,y,2)) > (x +r,y,z+5).

If we consider the lifted actiop! of ¢ to 7 Q, given by(¢'), = T¢,, then the infinitesimal
generators of this action are

s |2
T \ox’ oz’

Itis simple to verify thatL andM areG-invariant. Choose local coordinates y, z, x, y) on
M. We find that the distributioty, is generated by the vectors fields:
oo a . a 9 9 a9 0
M=\ox "oz 9y ax 9y 0%/
The symplectic vector bundlE N T M is given by
a a 9 .9 0 a 0
FNTM=(—+y—, — 45—, — +y—, —
ox dz dy 0z ox az dy
with symplectic orthogonal complement
d a o9 .0 9
— =y, — tX—= .
0z dx 0z ay ox
We realize that for eaclh = (x, y, z, x, y) € M, we have

(FNTM)* =<

V,.NF, = 8+ 9
m m_axyaz‘
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Therefore, we are in the general case. {t e,} be the standard basis BF and{e?!, ¢?} its
dual basis. We define a section of the vector burif™:
E:M — RHM
(x,y,2,x,y) —> e1 + yea.
Its corresponding nonholonomic momentum function is
Jg”h =x+yz.

We can construct, from the sectignthe vector fieldz:

Therefore, the momentum equation would be
d G+ y2) = 23
— X = .
@ yz) =2y
Using the constrainp, we may rewrite this equation as
N y ..
+ —_— =
e =0 (14)

In [3], Bateset al have obtained a constant of motion for this problem, apart from the energy,
related with the symmetry group and the constraint. We are now going to see how the obtaining
of this constant fits nicely in the geometrical setting we have exposed here.

We start by calling the nonholonomic Noether theorem [11,25,40], which ensures us when
a functiong is a constant of motion.

Theorem 4.15.A functiony : T Q — R is a constant of the motion df if and only if the
energy is constant along the integral curves of the vector fil, ), thatis,P(X,)(E.) = 0.

Now, it is important to realize the following facts:

(i) P(E)(EL) = B(EL) =0, becaus& € F N TM andE, is G-invariant,
(il) P(Xp)(EL) = 01 (Xg,, P(Xy)) = —X(¢) = 0, becaus& € FNTM.

Therefore, if we can find functiong g on 7 Q such that the vector field = fE + gX,
would be Hamiltonian, sayy = X,, from Theorem 4.15, we would have a constant of
the motion, due to the symmetry and the constraint. In general, the conditidh tof be
Hamiltonian’ will lead us to a quite complex first-order system of partial derivative equations.
However, in this case, it is not difficult to prove (just a few computations) that —-— and

g=- \/L_}z are sufficient. Consequently, we obtain the conservation law
@ =xy/1+y2
Then we choose the following section @?)M* — Q:
w0 — RO
g — u@: (RHH* — R

e1+ver = cy/1+y?

whereg = (x, y, z). We have thayf : M — R wheref = (u, &) otg — Jé”h is given by

f=c/l+y2—x(1+y?.
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The hypotheses of proposition 4.4 are fulfilled. A direct computation shows that the section
w satisfies equation (7). Thed™)~1(u) is a submanifold oM. In fact,

7w = [y 2k 3)/E = eV/TH)2) = (v 2 )

As the Lie groupG = R? is Abelian, the coadjoint action is trivial. Then it is easily seen that
the isotropy groug,, of the actionCoAd™ is G, = G. So we have the action
0:G, x ("™ ) — R
((ry5), (x, y,2, V) V> (x +r,y, 2+, y).
Consequently /") ~1(u) = {y, y}. We obtain that
X, =—2 0 Y )2 ernrm
R P T W el IR '

Therefore, for alb € CZ (M), we have

- . . . 0o cy S\
o, flmoj =Xy (U)OJ—P(Xf)(U)OJ—Xf(U)OJ—@(\/Tyz_)’x>—O'

Moreover, the mapping is injective:
k(M=) — M
0, ) > (v, eV 1+y2 ).

Then, we know from the above discussion that there is a well-defined almost-Poisson structure
on (J")~1(w) which is given by

{yv}-’}u =1

As conditions (9) and (12) are exactly the same (du€ jo= G), we have thaf., -}, is the
reduced bracket df, -},,. Indeed{-, -}, is integrable, that is, it is a Poisson structure.

5. The purely kinematic case

We now recover the discussion for general constrained systems (1) with symmetries. Suppose
thaty, N F, = {0} andT,M = V, + (F, N T, M), for all x € M. In principle, this leads

us to believe that the symmetries do not play an important role in reduction, because none of
them are compatible with the bundle of reaction forces. Indeed, in this gase,0 and we

have no constrained momentum mapping. However, we now see that the symplectic reduction
explained in section 3 takes a nice form here due to the particular geometry involved in the
system.

5.1. Reduction

In this case, we have th@tM =V, & (F, N T M), forallx € M. MoreoverU = FNTM,
soTM =V @ U. Sincel is G-invariant, this decomposition defines a principal connection
Y on the principalG-bundlepy, : M — M, with horizontal subspacl, atx € M. Note,

in passing, that her& represents a vector bundle of constant rank. In what follows wg let
denote a fixed5-invariant solution of (1) which, moreover, belongsKo In particular, this
means thak is horizontal, i.eX € U.
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Denote byh : TM — U andv : TM — V the horizontal and vertical projectors
associated with the decompositi®/ = Vs @ U, respectively. The curvature af is the
tensor field of typ&1l, 2) on M given by

R = i[h, h]

where [ ] denotes the Nijenhuis bracket of tygk 1) tensor fields. Taking into account thatin
the present casé = 7'M, we obtain onV a two-forma (which is now a genuine differential
form on M) and a functionH such that the projectioN of X verifies

iyo=dH. (15)

It should be pointed out that the reduced two-faprin general, need not be closed. We will
show, however, that in case the given two-fatnon P is exact, one can construct a reduced
equation, equivalent to (15), but now in terms of a closed two-formon

Assumew = db for some one-forn® on P. Denote by’ the one-form oV defined by
0" = jy0, wherejy : M — P is the canonical inclusion. By means of the given solufion
of (1) we can construct a one-foray on M as follows:

ay = ix(h*dd’ — dh*0") (16)

with the usual convention that, for an arbitrgsyform g8, h*g is the p-form defined by the
prescriptionh*B(X1, ..., X,) = B(h(X1), ..., h(X,)).

Proposition 5.1 ([10]). Assume, in addition, that the given actidrieaves) invariant. Then,
the one-formsh*9’ and ax are projectable. Moreover, the projectiaxi of X, which is a
solution of (15), also satisfies the equation

izdd, = dH —ax (17)
whered’, and@y are the projections of the one-forrhgd’ anday, respectively.

Proposition 5.1 describes a situation where a constrained Hamiltonian system (1) with
symmetry, admits a reduction to an unconstrained system (17), but with an additional
conservative force representeddy. Indeed, by construction, the one-forg satisfies

iXolX =0.

5.1.1. Caplygin systems. We now consider an interesting special subcase of the purely
kinematic case, namely a (generaliz€dplygin system. For such a system, the configuration
manifold Q is a principalG-bundler : Q —> Q/G, and the constraints are given by the
horizontal subspace of a principal connectjoon = (see [17,23]). We also have a regular
LagrangianL : T Q —> R, which isG-invariant. Itis known that the lifted action &f on the
symplectic manifoldT Q, w; ) is Hamiltonian. Let us assume that the resulting nonholonomic
system verifies the compatibility condition. The constrained equations then read as (cf (3)):

ixw, —dE; € S*(TM°

ixop L ( ) (18)

X eTM.

Under the above conditions, one can easily see that there exists a well-defined Lagrangian

functionL* : T(Q/G) — R, given by

L*(Y) = L((Y")y)

foranyY € 7,(Q/G), whereg € Q is an arbitrary point in the fibre overe Q/G andy™"
denotes the horizontal lift af with respect to/.
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A direct computation shows that,n F = {0}. Moreover, we hav&/ = F N TM, and
U is symplectic with respect o, . Therefore, we deduce that

TM=VoU.

Thus, aéaplygin system indeed fits in the purely kinematic case. Moreover, one can prove
thatM = M/G = T(Q/G) andE, = E;-.

The compatibility conditionF+ N TM = 0 ensures the existence of a unique solution
X = I', y of (18) which, moreover, is a SODE. Notice thigt 5, can be obtained by projecting
the unconstrained Euler-Lagrange vector fiejdby means of the first projector associated
with the decomposition

T(TQ)wu=TM® F*.
Sincew; = —df,, the reduced equation becomes

i;(a)L* = dEL* —O{[‘L'M

wherear, ,, is the projection of the one-foraa-, ,,, defined by (16). Observe that
irar,,, =0
for any SODET on T (Q/G). This implies thatr, ,, is a one-form of gyroscopic type.

Remark 5.2. As was pointed out in [38K:aplygin considered systems with Abelian groups
of symmetries and it seemed to be Voronec who extended the theory to general Lie groups.

Remark 5.3. After the above reduction procedure, system (17) can still possess some
symmetries we have not taken into account. This is the case, for examphes wértical
rolling disc [6, 10]. Consider a rolling disc of radiuB constrained to remain vertical on a
horizontal plane. The configuration spac®isc S* x S*.

The dynamics of this mechanical system is described by

(i) the regular Lagrangian:

L = J(mx?+my® + 1,67 + [02)
wherem is the mass, andl, > are moments of inertia;

(ii) the nonholonomic constraints:
1 =% — (RCcosH)f, =0
¢2 =y — (Rsin6)6, = 0.

Consider the grour = R? and its trivial action by translations af:

®:Gx0— Q0

(r,s) X (x,9,01,02) —> (x +r,y +s,061,62).

Note thatp : Q — S* x S'is a principalG-bundle andV, the constraint manifold, is the
horizontal sub-bundle of a principal connection, so that the given syste@eplsgin system.
Following the above analysis we then obtain

L* = (162 + mR? + 15)62)
wr» = 11dO; A d@l + (mR2 + 1) do> A d92

In this particular case the gyroscopic one-fazf,, = 0 andw; = w;+. So the reduced
equation (17) becomes

i)’(a)L* = dEL*
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Now, there are still some symmetries of this system we can consider. DEnfatethe Lie
groups! x St and let us define

VK xQ/G— Q0/G
(A1, A2), (01, 62)) = (01 + A1, 02+ X2).

If we consider the lifted actio&! of ¥ to 7(Q/G), given by(¥?), = T, itis clear that
the Lagrangiarl* is K -invariant. Then, we can perform further reduction.
Thus, in general, the reduced system (17) can still enjoy more symmetries to be considered.
LetWw : K x M — M be an action o that leaves invariant the reduced Hamiltonimnd
the one-formg’;,. We can define a momentum mappidg, M — £*, in the usual manner:
(J (), n) = —(0'4(m), ny (m)) for m € M andn € . Itis easy to see thaj, do’, = dJ, for
all n e £. Using equation (17) and thi-invariance ofH, we obtain a momentum equation

X(Jy) = ax(ny). (19)

5.1.2. The nonholonomic free particle revisited\e will show now how the example of the
nonholonomic free particle can also be seen@sajlygin system. With the same notations of
section 4.1.4, consider the Lie groGp= R and its trivial action by translation of:

®:GxQ0— Q0
(s, (x,y,2)) > (x,y,z+5).

Note thatM is the horizontal subspace of a connectipron the principal fibre bundle
Q0 — Q/G,wherey = (—y dx+dz)e, with {e} the infinitesimal generator of the translation.
Therefore, this is £aplygin system. Following the above analysis, we obtain that

L* = (A +y)x* +3%)
and the reduced system
i;(a)L* = dEL* — O,y

wherear, ,, = xyy dx — yx?dy. Now we can take into account the remaining symmetry we
have ignored so far. Consider the Lie grakip= R and its action orQ/G:

V:KxQ/G— Q/G
(r, (x,9)) > (x +r,y).
Itis clear thatL* is K -invariant. The momentum function for this action is
J:T(Q/G) — R*=R
(x,y,%,9) — (1+y>xe.

We computerr, , (erg/6)) = xyy and using (19), we get
d
5 (@ +yH0) =iy

which is just

Y

-
X 142

iy =0

that is, the same result obtained in (14).
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5.2. Reconstruction

We now discuss the problem of reconstructing the dynamidd drom the reduced dynamics
onM inthe case where (1) admits a unique solutiarSuppose the flow of the reduced system
X is known. Take:(r) an integral curve oK starting from a poink € M, and fixx € p~1(x).
We want to find the corresponding integral curye) of X starting fromx which projects on
c(t), i.e. p(c(t)) = c(r). But we must realize that the curveér) is just the horizontal lift of
¢(t) starting fromx with respect to the principal connectiah We prove this simple fact in
the following.

Proposition 5.4. The curvec(¢) is the horizontal lift o (¢) starting fromx with respect to the
principal connectiorY.

Proof. Letd(¢) denote the horizontal lift of (¢) starting fromx. Therefore,o(d(t)) = ¢(¢)
andd(0) = x. SinceX and X are p-related, we have thafp (X (d(t))) = Xp(d(t)) =
XEé(t) = &(t) = Tp(d(1)). Therefored(r) — X (d(t)) is vertical. But it is also horizontal,
becauseX € U. Then we deduce thalt(r) = X (d(¢)). O

Thus, in the vertical case, the reconstruction problem is just a horizontal lift operation. We
now briefly recall the concepts gkeometric, dynamic and total phades the reconstruction
process [34]. The geometric phase is just the holonomy of theggathvith respect to the
connectionY, thatis, the Lie group elemegtso thatd (1) = g-d(0). In general, we will have
thatc(z), the integral curve projecting af(¢), is not exactlyd(¢), the horizontal lift ofc(z),
but a shift of this curveg(r) = g(¢) - d(t). We call the Lie group element(1) the dynamic
phase, and the total phase will standfioe g(1) - g.

Corollary 5.5. In the vertical case, the geometric phase coincides with the total phase.

5.2.1. Caplygin systems. Concerning the reconstruction process@aplygin systems, the
above description remains valid, of course, but we can say a little more about the holonomy
of the two connectiong; andY'. The following diagram will be helpful:

TM=U®V, — TMZ=U

2 2
TQ=M®V, — T(Q/G)=M
\: \:

0 — 0/G.

Let ¢(r) be the integral curve ok starting fromx. Fix x € p~1(x) and consider its
horizontal lift, c(z), with respect tor starting fromx. We have proved that(r) is precisely
the integral curve o starting fromx which projects ort(z). Letg(¢) be the projection of
c(t) 10 Q/G, q(t) = mg,6(¢(t)). We denote by¥ (¢) its horizontal lift with respect tg .
Finally, we writeg (t) = o (c(t)). Thenwe haver (¢ (1)) = momp(c(t)) = mg gop(c(t)) =
mo,6(c(t)) = ¢ (). Sincec(r) is an integral curve of a SODE, we haye) = ¢(1) € M. So
we have proved that(z) is just the horizontal lift o (¢), i.e.q(t) = g™ (¢).

Now, we study the holonomy @f(r). Let us suppose thatr) is a closed loop. We have
¢(0) = ¢(1) = x andc(0) = x. Consequently; (1) = gx andg is the geometric phase, which
is, in the vertical case, the total phase.d&s = ¢ (1), we have thag™ (1) = g¢™ (0) which
in particular implies thag™ (1) = g¢™ (0). We have then proved the result of the following
proposition.

Proposition 5.6. The geometric phase (respect™) of a closed integral curve of is the
same as the geometric phase (respegt)tof its projection toQ/G.
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5.2.2. Plate with a knife edge on an inclined planélhe configuration space of the plate
with a knife edge on an inclined plane @& = R? x S$* with coordinategx, y, 6) (see, for
example, [38] for more details). This system is determined by the following data:

o the regular Lagrangian functiab
L:TQOQ—R
(x,y,0,x,y, 9) — %()'c2 + j/z) + %kzéz + gx sina
where the mass of the plate is assumed equal to unity;
o the nonholonomic constraint function:
¢ =y — xtand.
Consider the Lie grour = R and its trivial action by translation o@:
P RxQ— Q
(r,(x,y,0)) — (x,y +r,0)
with associated fibration
0.0 — Rx st
x,y,0) —> (x,0).

Note thatp : Q — R x Stis aprincipal bundle, with structure grogh andM, the constraint
submanifold, is the horizontal distribution of a principal connectjpnThe connection one-
formisy = dy — tan6 dx. Therefore, this is €aplygin system.

The corresponding reduced system (17) is described by:

o the reduced Lagrangial*:
L :TRxSH — R
(x,0, %,0) — (se@0i? +k%0?) + gx sina
o the gyroscopic one-form:
a@r, ,, = tand se0[(x)>dg — x6 dx].
After some calculations, one finds the following equations of motion:
¥ = —x6tand + g sina cos 6
6 =0.
We obtain that! = wt + 6, wherew and6y are constants. Consequently, a solution for
the initial condition®y = xg = xg = 0 andfy = w is
x = % sina sir? wt
0 = wt.
This curveg () = (x(¢), 8(1)) is closed since
q(0) = q(2r/w).
The horizontal liftq(t) = g™ (1) of the curveg(¢) with initial conditionsfy = x¢ = xo =
yo=yo=0andfp =wis

x = =2 sina sir? wr

20?
g .
y = z—wzsma[a)t — Zsinot]
0 = wt.

Observe thag (0) = (0, 0, 0) andg (27 /w) = (0, £7 sina, 0). Therefore, the geometric
phase of the curve(r) is £7 sina.



8636 J Cortes and M de Len
6. The case of horizontal symmetries

The assumption now is that, N F, = V,, for all x € M or, equivalentlyV,, C F. In
particular, every infinitesimal generator of the given group action then yields a horizontal
symmetry. Thus, in this case, all the symmetries are compatible with the htindleis leads

usto suspectthat we can perform a holonomic-type reduction. Note, also, thatan unconstrained
Hamiltonian system with symmetry can be regarded as a special subcase of this case, since we
then haveM = P, F = T P and, obviouslyy c T P.

6.1. Reduction

For the further analysis of this case we assume, in addition, that the given symplectic action
® on P is a Hamiltonian action, in the sense that it admitsai-equivariant momentum
mappingJ : P —> g*, such that for alk € g, ir,w = d(J, §). It follows from the definition

of the momentum mapping tha = X, whereJ: (x) = J(x)(§) for all x € P. Taking

into account that, by assumption,, C F, we find that for any solutioX of (1), along the
constraint submanifold/ we have

X(Je) =0

i.e., the components of the momentum mapping are conserved quantities for the constrained
dynamics. This is a version of Noether’s theorem for constrained systems. (For the case of
mechanical systems with nonholonomic constraints, see, in this respect, [6,11,40].)

Let u € g* be a regular value of . Since the actiong, of G on P is free and proper,
we have that the isotropy grou@, acts freely and properly on the level setl(u). Itis
known (see [1,30,36,37]) that under these conditighs= J(x)/G,, »,) is a symplectic
manifold, wherew, is the two-form defined by

* %
T,0u = J,®

with 7, : J~(u) — P, the canonical projection, ang, : J-*(u) < P the natural
inclusion.

Imposing a condition of clean intersection 8f and J~%(u), we have thatM’ =
M N J~ () is a submanifold of/ ~*(x) which is G ,-invariant. Passing to the quotient
we then obtain a submanifold,, = M’'/G,, of P, (that, with the adequate embedding, can
be identified withM N P,)). Next, we can define a distributidff on P alongM’ by putting

F., =To(J X)) N Fy vx'e M’

and we now make the further simplifying assumption thahas constant rank. It is obvious
that F’ is a G ,-invariant sub-bundle of" P, and, hence, it projects onto a sub-bundje
of TP, along M,. Finally, since the restriction of the Hamiltonidd to J () is also
G -invariant, it induces a functio#/,, on P,,.

Theorem 6.1 ([10]). Suppose thaX is aG-invariant solution of (1). TherX induces a vector
field X, on M,,, such that

(l'xMa)M — dH/t)|Mu S F/(l)

X, eTM,. (20)

In the case of horizontal symmetries we have thus proved that, under the appropriate
assumptions, the given constrained problem Bnw) reduces to a constrained problem on
(P/u a)//.)-
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6.1.1. Lagrangian systemslLet us suppose that we have a nonholonomic Lagrangian system
which fulfils the compatibility condition. Next, we show that: (J7")-1(u) — M is
injective and conditions (12), obtained in section 4.1.3 to perform a kind of reduction via the
mappingk, are satisfied.

Proposition 6.2. Letk @ (J"")~"Y(w) = M, — M be the composition of, : M, —
M/G,andp: M/G, — M. Then we can define aWl,, a unique almost-Poisson structure
so thatk is an almost-Poisson mapping.

Proof. It is an easy exercise to prove thais injective in the case of horizontal symmetries.
From the analysis of section 4.1.3, we know that it is sufficient to prove conditions (12). Now,
takingéy, ..., & as a base of the Lie algebgawe have thalf; = (1, &) — J;,, 1 <i < r.
Giveno € CZ (M), we deduce that

{o, filmoj=E)roG)ojuoj=EIm@)oj=0
due to theG-invariance o . O

On the other hand, we have that the symplectic distributionT M induces a symplectic
distributionF, NTM, inTP, =T (T Q),, thatis

T(TQ)yy, = (FuNTM,) @ (Fu NTM,)™
with induced projectors for eadly € M,
Py T, (T Q) —> ((F)3, N Ty, M) Qu : T5, (T Q) —> (Fu)g, N Ty, My)™.

The above descomposition induces an almost-Poisson brackgi, on M, in the same
manner as we previously did faf in section 4.1.2. More precisely, givep, o, : M, — R,
take 1, &, arbitrary extensions tq7 Q),, A © ju, = Au, G4 © ju, = 0, With
Jm, * M, — (T Q),, and define

{Aps outm, = (wL)M(ﬁM(Xfu), 75M(Xf-f#)) °Jjm,-
Indeed, we have thdt, -}»;, = {-, -},., as we prove in the following.
Theorem 6.3.Consider(M,,, {-, -}»,) and (M, {-, -};;). Thenk : M, —> M is an almost-

Poisson mapping.

Proof. First of all, consider the following commutative diagrams:

My =M - M M T
i ) T 4 1y
T (w) o) M, % (TQ),.

Now, the proof is a careful exercise of equalities. Indeed, giyew,, : M, — R, we have
P ouduomy = {4, 0}z okomy = (A, o}y o j = wr(P(X3). P(Xs)) 0 ju o ]
= (jm © )*or(P(X;), P(X5)) = (7, 0 i) (1) (P(X5), P(X5))

= (wL)M(ﬁH(Xf“), Pu(X5)) 0 jum, 0 Tmr = {hys 0 by © T
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Remark 6.4. It should be noted that from the general discussion in section 4.1, it is concluded
that for nonholonomic Lagrangian systems which fit in the horizontal case, theorem 6.3 is
the utmost one can say. That is, while conditions (12) are always fulfilled, conditions (9)
are no longer satisfied in general. This means, in particular, that the almost-Poisson bracket
{-, -}um, is not the reduced bracket ¢f -}, as it was stated in [9] (theorem 8.2). However,
following (13), we know that for alk,, € C*>(M,,), its evolution along the integral curves of

the dynamics is given by

)\u = (FLM)/L()"M) = {)‘Ms (EL)/L}M,L'

6.2. Reconstruction

As far as the reconstruction of the dynamics is concerned, we observe that, unlike in the purely
kinematic case, we first have to select an arbitrary connection on the prirgjpblndle
M’ — M,. This connection will enable us to subsequently lift the integral curves of the
reduced system from,, to M.

More precisely, lefY be such a principal connection. We start wéjf(z), an integral
curve of X, with the initial conditionc,,(0) = m,,, m,, € M,,. We choosen € () *(m,,)
and wish to find the unique integral cursg) of X which satisfieg(0) = m. AsX andX, are
m,-relatedc(¢) projects orx, (r). We will proceed in a similar way as in Marsdehal [34]
for the holonomic reconstruction.

_Considerd(¢) the horizontal lift ofc, (1) with d(0) = m, that is,x, (d(t)) = c,(t) and
Y(d(t)) = 0. Pute(t) = g(¢)d(z), for some curvg(¢) in G, with g(0) = e. Asc(t) is an
integral curve ofX, we have thaX (c(¢)) = ¢(?), i.e.,

X(g(nd(®) = (g(1)d(1)) = g(t)d(t) + () (g~ (1)g(1)md (1)).
As X (g(t)d(t)) = g(t)X(d(1)), we conclude
X(d(0) =d @)+ (g 0)g®)ud ). (21)
So we can factorize the reconstruction process in two steps:
(i) To find a curvet(z) in g, so that
EOu(d®) = X@@) —d@).
(if) To find a curveg(¢) in G, so that
g(t) = g(H)é() 8(0) =e.
Making use of the connection, we can replace (i) by
(") E(t) = TEOuE @) = T(XE@) —d(1) = T(X(d(1))).

Cotangent bundles. We now discuss the case in whi¢h= T*Q, andG acts freely onQ,
¢ : G x Q — Q, and therefore o by cotangent lift® : G x P — P. We will show
below that if the bundle, : 0 — Q/G,, has a connection, for a certginto be specified,
this induces a connection gn: M’ — M,,.

The momentum mappind : 7*Q — g* for the Hamiltonian actiond is defined
by (J(@). &) = (ag.50(@)) = (0(c). Ereg(ty)), Wherea, € T7Q, & € g. Let
w € g* be a regular value of and suppose again that its isotropy gra@p acts freely
and properly on the level set~1(x). As before, we consider the symplectic manifold
(T*Q), = U Xw)/G,, »,). We denote by’ = Kig, € 8, the restriction ofu to g,,.
Assumeg, : Q — Q/G,, is a principalG-bundle and ley € A'(Q, g,) be a connection
form on it. We recall now the cotangent bundle reduction theorem of Satzer, Marsden and
Kummer (see [1,21]).
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Theorem 6.5.Let © be the curvature of and let B the pull-back byr : T*(Q/G,) —
Q/G,, of the closed two-form o@/G , induced by the/'-component of2, i’ - Q € A%(Q).
EndowT*(Q/G,,) with the symplectic forrm — B, wherew is the canonical two-form of the
cotangent bundle. The(T*Q),, is symplectically embedded {#*(Q/G ), » — B) and its
image is a vector sub-bundle with ba@¢ G,,. This embedding is onto if and onlygi= g,,.

The following conmutative diagram will help us to handle the theorem:

M — I — I N0 — TS

\: A \: \:

M, — (T*Q), — T*(Q/G,) - 0/G,
whereJ, : T*Q — gi, 1, : Jﬂ‘l(u’) — Jﬂ‘l(O) ande, : (T*Q), — T*(Q/G,)
are respectively defined by, (a,) = J(og)|g,, tuley) = ag — i’ - y,(-) and g, (a,) =
oy — W -y, foralle, € T*Q.

The connectiory € AY(Q, g,,) induces a connectiof € A'(M’, g,) by pull-back,

T = (tg - t,)*y so that¥, (U,,) = y,(Ttg - Uy,) forall U,, € T, M'. Thus now, we can
rewrite (i) above as

(i E@) =YX (1) =y(Ttg - X(d @) = y(FH(d(1)))
whereFH : T*Q — T Q is the fibre derivative of the Hamiltoniall : T*Q — R.

6.2.1. Lagrangian systemslf we have a Lagrangian of mechanical type= T — V, where
T is the kinetic energy of a Riemannian metgion Q, andV is a potential energy, we know
(see [23]) that the nonholonomic Lagrangian system fulfils the compatibility condition. Making
use of the metrig, we can define a natural connection, to be calledribehanical connectign
on the principal fibre bundle, : 0 — Q/G, as follows: we take),, = kerTg, and
considerH = Vjﬂ, the orthogonal complement df, with respect to the metrig. We define
ymechas the connection 0@ — Q/ G, whose horizontal subspacefis

We know thatF H(a,) = ag, where H is defined fromE; through the Legendre
transformation and denotes the natural pairing of vectors and co-vector3 fduced by the
metricg. Again, we can rewritei() in the following form:

(9] E(1) = Ymecllg ) (FH (1)) = Vmech(‘I(t))(d(t):)

with ¢(t) = T(d(1)).
If we define for eacly € Q theu-locked inertia tenso(see [33])./.(q) : g, — g, by

(L(@)¢. 1) = (£o(@). ng(q)), We can Verifyymee(v,) = 1, %(q)J (vy), with v’ the co-vector
associated to, through the metric. We then rewrité)(as,

(") £(1) = Ymec(g (D) A®)*) = I, (g (1)) (1).
Compare this result with those in [6].

7. A special subcase of the general case

Now we are going to consider the case in which the bugdlés trivial, that is,g* = go,
Vx € M. Following [9], we can prove the following proposition.

Proposition 7.1. ggis anideal ofy which is invariant with respect to the adjoint representation.
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Next we consideiGg, the normal connected subgroup Gf with Lie algebragg and
dg : Gox P — P, therestricted action tG. For this action, itis clear thadyy C FNTM,
so we are in the case of horizontal symmetries. Now we are going to proceed in the way
described above.

As before, we can assume thég on P is a Hamiltonian action, this is, it admits an
Ad*-equivariant momentum mapping: P — gg, such that for alE € go, iz, = dJ;.
Let 1 € g be a regular value af and suppose tha?, its isotropy group irGo, acts freely
and properly on the level set *(1). Under these conditiongP, = J '(1)/G%, w,) is a
symplectic manifold. We also suppose tidtand J () have a clean intersectiopf’ =
MNJ~Y(w), whichis aGY-invariant submanifold of ~*(.1). We then considetf, = M'/GY.

We can define a distributiof’ on P alongM’ by puttingF;, = To(J X)) N Fy,¥x e M’

and in addition assume th&t has constant rank. Agai#; is Gg—invariant and it projects onto

a sub-bundle, of T P, alongM,,. Finally, with the functionH,, induced by the restriction

of the HamiltonianH to J ~1(u), we have all the ingredients to apply theorem 6.1 and obtain
the following reduced constrained problem@,, w,,):

(ix, o, — dH)m, € FY

(22)
X, eTM,.

So far, we have reduced the constrained problem by the horizontal symmetries and
have again obtained a constrained problem. We will now investigate what happens with
the symmetries we have not used yet. In the following, we are going to take them into account.

For this purpose, we consider the actn: G, - Go/Go x P, — P, defined by
(g, p) = ®(g, p). Note that this action is well defined because we are not treating with all
the remaining symmetrigs/ Go, but only with the adequate ones®y. Indeed, we prove the
following lemma.

Lemma 7.2. The mappingV is well defined.

Proof. We must verify that giverg, 7 € G, - Go/Go and p,§ € P, so thatg = h and
p = G, we have¥ (g, p) = W(h,g). SinceG, - Go/Go = G,/G, NGy = G,/G°, we
can consideg, i as elements of this latter group, so we have thdg € G, N Go. We also
have that there exists e Gg such thatp = iq. Thengp = giq = gih~*hq. Moreover,
gih™t = (ih~1g)¢" e Gy, becauseé andh~lg are inGo, and this group is normal ifG.
Clearlygih™ € G, so finally we have thagih ™ € GY. We have obtaine@p = hq, i.e.,
Vg, p) =V (hq). m

In a similar way, we can check easily thiatis a symplectic action oR, and thatV,,, F,,
andH, are allG,/GY-invariant. We denote,, : P, — P, the canonical projection fob
andy, =kerTp,.

Our aim is to prove that, under the assumptibnd, = (F, N TM,) +V,,, , the
constrained Hamiltonian problem with symmetries(@, ,,) fits in the purely kinematic
case. For this purpose, we now identify the fundamental vector fields for the dction

Lemma 7.3. Let¢ + g, N go be an element af,, /g, N go, the Lie algebra OGM/Gg. Then

(€ +8,N80)p,(P) = T7,u8s-140(P) Vp e J ()

wherer, : J~'(u) — P, isthe projection mapping associated to the actio6§fonJ ()
and¢;-1, is the fundamental vector field corresponding to the actio@ gbn J ().
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Proof. We have

_ d _ d — _
(& +guNgop,(p) = (—) W(exprs + g, Ngo). p) = (—) v(exp, ¢, p)
dt /o dr /o

d -
- <E> (€X9, 18 p) = T (P)-
[t=0

Now, we are in a position to prove the former statement.

Proposition 7.4. 1t T M, = (F,NT M,,)*+V,,,,, , the reduced constrained Hamiltonian system
(22), considered with the actiob on P,, fits in the purely kinematic case.

Proof. We must prove tha,): N (F,,);: = {0}, Vx € M,,. Suppose that +g, Ngo)p, (X) €
(F,)x for somex € M,. Recall thatF, ., = Tw, F;. Then, we have that there existse F;
suchthat'n, (Y) = (¢ +g,Ngo)p, (X) = T7, (551, (x)) Which, in turn, implies there exists
£ € g% = guNgosuchthat 1., (x) = Y +&,-1(,(x). Therefore(s —&) ;-1 (x) = ¥, which
gives; —& € g* = go. Obviously,; —& € g,. Then +g,Ngo = E+g,Ngo = O+g,Ngo. O

Next, we proceed as in section 5.1. We obtain a principal connettion the principal
(G,L/Gg)-bundlepMM“ : M, — M, with horizontal subspadé; = (F,)z N Tz M, ateach
pointx € M,.

If we assume again th&?, ») is an exact symplectic manifold, with = df, we can
define in a natural mannéy, so thatw,, = dd,. Obviously,d, is G,L/Gg—invariant. Let
o', = Jit, Ous wherejy, : M, < P, is the canonical inclusion. Then proposition 5.1 applies
to the reduced constrained Hamiltonian problem (22) to give

iz, =dH, — @y, (23)
whereay, is the projection oty , with ax, = ix, (h*d0’, — dh*6’,), andw = d(é/u)h,
with (¢’,,),, the projection oh*6,,.

Remark 7.5. In general, the conditiong® does not depend an € M’ seems to be quite
restrictive. In [40],Sniatycki definedy’ C g by

g = {€' € g| there exists a constant sectidof g with &(x) = &, Vx € M}.

In other words,g’ consists of those elements gfsuch that its corresponding infinitesimal
generator of the induced action @t is a horizontal symmetry. I§* does not depend on
x € M, itis clear thaigo = g¢'.

Sniatycki claims thay’ is an ideal ofg and then he considers the normal connected

subgroupG’ of G with Lie algebrag’. The reduction process is parallel to the one performed
here until we reach proposition 7.4, which will not be true in general.

As in the case of reduction, reconstruction of the dynamics is a two-step process: first,
implementation of a purely kinematic-type reconstruction and then of a horizontal-type one.

7.1. The nonholonomic free particle modified

Next we are going to treat the example of the nonholonomic free particle, but with a different
constraint. As before, we have a particle moving in space, subject to the nonholonomic
constraint

¢ =7z—xx.
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This constraint is semi-holonomic [2] and, consequently, the problem admits an unconstrained
description on the leaves of the foliation defined@nAnyway, we will ignore this point, just
to illustrate the two-step reduction procedure developed above.

The Lagrangian function is

L=3G%+y%+2%)
and the constraint submanifold is defined through the distribution

d a 9
M={—+x—,—).
ox az dy
Consider the Lie grougr = R? and its action orQ:
p:GxQ— 0
((r,s), (x,y,2)) —> (x, y+r,zts).

If we consider the lifted actiod of ¢ to 7 Q, given by®, = T¢,, then the infinitesimal
generators of this action are

a 0
ay az )’

It is a simple verification to see thdt and M are G-invariant. Choose local coordinates
(x,y,z,x,¥) onM. We find that the distributiotf),, is generated by the vectors fields:
{ ad d d o0 d 0 }
—tX = =T (-
ax dz dy dx 0dy 0z
We realize that for eachh = (x, y, z, x, y) € M, we have
Vu NF, 9
0= ()
Note that the fibrgR?)” does not depend on the base paine M. Then, the bundl€R?)”
is trivial and we are just in the special subcase of the general case treated in this section. With
the notations we have been usigg= R x {0} andGo = R x {0}. Let{e;, e>} be the standard
basis ofR2 and{e?, 2} its dual basis. Now, considdr, the restricted action ob to Go. ®g
is Hamiltonian, with momentum mapping:

J:TR® — R*
(X, .2, %, 3,2) —> ye'.
Letu = ae' € R*. We have thaG% = R andJ '(u) = {(x, y. x, ¥, 2)}. Therefore,
(TR?),, = {(x,z,%,2)} (w1), = dx A di +dz A dz.
We note that\f andJ ~1(x) have a clean intersectiad’ = {(x, y, z, x)} so that
M/J. = {(xv <, -x)}
After some computations, we find that
ad d a9 0
FM ={—+tx—, —, —
0x dz dx 0z
d d 0 a0 .0
FM N TMM ={—+x—, —+tx—+x—).
ox 0z 0x 0z 9z
Finally, we obtain(E;), = 3(x?+z2 +4?). With all these ingredients, we pose the
following constrained problem (22) aid7R3, (wr))):

(i<rL.M)u (wL)y — d(EL)/L)‘MM € FS

(24)
(FL,M);L € TMM
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Now, we investigate what happens with the symmetries we have not used yet. We have
thatG, = R? and consequentlyG,, + Go)/ Go = R. Then we consider the action
W (G, +Go)/Go x (TR, — (TR®),
(s, (x,2,%,2)) /> (x,2+5,%,2).
The canonical projectiop, is given by
put (TR3), — (TR3),
(x,2,%,2) — (x,%,2)
and its restriction ta/,, is
Puim, - M, — M,
(x,z,x) —> (x,x).

The vertical bundle of the actio# is

Vo= Gl
n az .
For eachn, € M, we have that
(Vu)mu N (F;L)m“ = {0}

Moreover, TM, = Fy, N TM, + V., . Therefore, the constrained system (24) on

(TR3),, (w1),) fitsinthe purely kinematic case, thatis, we obtain a principal connettiam
the principalR—bundIep,”Mu : M, — M, with horizontal subspadé,,, = (F,.),NT,n, M,
at each pointz,, € M,,. The connection one-form is

T = (dz)e

where{e} is the canonical basis of the Lie algeltga + go)/go = R. We have thatTR3, w;)
is an exact symplectic manifold, so we can define

0, =—xdx —zdz
and (o), = df,. We check thad’, = j;;ﬂ@,t = —x(dx + x dz). Next, we calculate the
one-formar, ), on M, defined by the prescriptioar, ,,), = ir,,), (h*d0’, — dh*6’,).

First, we have that
h*do’, = dh*0’, = (1 +x%) dx A dx
and consequentlyr, ,,), = 0. Projecting ontd,,, we obtain that
®=1+xdx Adx
(ED)y = 321 +x%) +a?).
Now, following (23), we can write, from the constrained problem (24), the reduced
unconstrained system
i, ® = d(EL),. (25)

From a straightforward computation we have that the solutigny),, of equation (25) is the
vector field

9 xx2 9

Tom), =i — 2
(e, Yox  1+x20x
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